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Duality 

R J N PHILLIPS AND D P ROY 
Rutherford High Energy Laboratory, Chilton, Didcot, Berkshire 

Abstract 
I n  elementary particle physics, low energy interactions are characterized by 

resonance formation and high energy interactions by Regge pole exchanges : two 
quite different and apparently unrelated mechanisms. Duality is the hypothesis 
that they are in fact simply and quantitatively related. The  present review des- 
cribes the background and motivation for this hypothesis, and the different degrees 
of severity with which it can be formulated, together with some of its most notable 
predictions. Applications to the scattering amplitude are discussed in 0 3 ; the most 
significant results being exchange degeneracy for high energy scattering and the 
Regge interpolation of resonances at low energy. Section 4 describes applications 
to particle classification. Duality constraints tie together several SU(3) multiplets, 
like a higher symmetry scheme ; the exoticity prediction for the baryon-antibaryon 
channel is discussed in detail. Section 5 describes duality diagrams that provide a 
simple prescription for deriving most of the duality results. Section 6 is about the 
Veneziano model, a simple form of amplitude that satisfies duality explicitly; 
extensions to multiparticle scattering are also sketched. The  final section discusses 
applications of duality to the inclusive reaction, which is a field of immense activity 
at present. The  most significant results are again exchange degeneracy and the 
Regge interpolation of resonances-this time for the regions of high and low missing 
mass. 

This review was completed in July 1973. 

Rep. Puog. Phys. 1974 37 1035-1097 
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1. Introduction 

In  elementary particle physics, duality is the name of a simple and direct relation 
postulated to hold between low energy and high energy scattering mechanisms. 
I t  began as a guess, based on a little experience, but is now recognized as a rather 
general class of theoretical hypothesis. T o  appreciate its significance, one must 
first realize that there is no unified calculable theory of all elementary particle 
phenomena yet; there are workable theories all right, but they apply to limited 
ranges of effects, and relations between them exist in principle rather than in 
practice. Thus the dynamical mechanisms used to describe and systematize high 
energy scattering were not, in practical terms, closely related to the mechanisms of 
low energy scattering. Duality connects these apparently disconnected regimes. 

[ U )  Cb, 

Figure 1. (a) Resonance formation; (b)  particle exchange. 

For low energy interactions, the dominant dynamical features are resonances, 
which are unstable particle states that are formed and subsequently decay in 
various channels as illustrated by the Feynman diagram l(a). They give a fluctuat- 
ing energy dependence. Typically, resonances give bumps in total cross sections at 
the resonant energies. The  resonant partial wave amplitudes are changing rapidly 
here, so differential cross sections and polarizations also fluctuate rapidly. As energy 
increases, however, the resonances become more closely spaced and also wider, and 
their overlapping smooths out the fluctuations. 

At high energies, the dominant mechanism is supposed to be Regge pole 
exchange, indicated in figure l (b ) .  This is essentially Yukawa’s old idea of virtual 
particle exchange, but in the modern version the exchanged particle not only has a 
virtual energy-momentum vector but also a virtual spin. The  resulting energy 
dependence is smooth. 

Both the resonance and Regge pole mechanisms depend on intermediate 
single-particle states, which are the simple and basic things in S matrix theory. 
This is an attractive feature. However when it comes to details the two mechanisms 
are totally dissimilar and apparently disconnected. Each regime has been extensively 
studied by itself and many systematic features are known. The  beauty of duality is 
that it relates these two sets of systematics. At an empirical level, duality is very 
successful in correlating many apparently unrelated phenomena and in predicting 
new relationships. At a deeper level, duality puts powerful constraints on the under- 
lying theory, with profound dynamical consequences. 
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An example may suggest some of the power and the surprise of duality pre- 
dictions. Suppose two particles a + 6 have no resonances in their low energy inter- 
action. Then, for their high energy interaction, duality predicts that the amplitudes 
are purely real for all non-diffractive scatterings a+b+c+d,  and that the total 
a + b cross section is approximately independent of energy. 

So much for the commercials. We hope this introduction gives some idea of 
what duality means, to non-specialist readers, because this is probably where we 
part company. T o  get any further, we must confront some technicalities. It is 
necessary to know a few things about the resonance and Regge pole mechanisms, 
before a connection between them can be properly understood and appreciated. 
For semi-specialist readers, like a new graduate student in high energy physics, 
$ 2  summarizes what is needed about analyticity, crossing symmetry and Regge 
poles. Section 3 gives more precise definitions: duality can in fact be sharpened and 
stated with various degrees of severity. Subsequent sections describe the classifica- 
tion of particle multiplets, duality diagrams and dual models. The final section is 
devoted to duality in the inclusive reaction. The  inclusive reaction is currently a 
field of intense activity, and duality plays a very significant role here. 

This is a good place to mention other reviews of duality. We especially recom- 
mend the Schladming lectures of Jacob (1969) and Kugler (1970), and the Brook- 
haven lectures of Harari (1969b). For a more thorough introduction to S matrix 
theory and Regge poles, see standard textbooks such as Omnks and Froissart 
(1963), Jacob and Chew (1964), Barger and Cline (1968); see also reviews such as 
Phillips and Ringland (1972). 

2. Preliminaries 
2. I .  Analyticity and crossing 

three processes 
Figure 2 shows a general two-body scattering. In  fact, it represents any of the 

a + b+c+ d (s channel) 

a + E+ &+ d ( t  channel) (2.1) 
a +'d+ c + 6 (U channel) 

or these time-reversed. The  usual kinematic invariants are 

which obey the constraint s + t + U = map + 1126' + m,2 + ma2, where particle i has 
mass mi and 4-momentum p,. These variables have different physical meanings in 
different channels. In  the s channel, s is the square of total centre of mass energy, 
while the other two are invariant squares of momentum transfer (their roles are 
permuted in the t and U channels). 

Crossing symmetry says that not only a single picture, but also a single invariant 
scattering amplitude A(s ,  t ,  U), describes all three channels above. Since the physical 
regions for different channels do not overlap, the connection between them is made 
by analytic continuation. Typically, we may fix t < 0 and define v = s -  U as the 
remaining independent variable. Then A ( v )  is analytic in the v plane, with cuts 
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along the real axis from vs to 03 and from vu to -03, where v2 corresponds to the 
lowest x channel threshold. There may also be isolated poles on the real axis, 
corresponding to bound states in one or other channel. Figure 3 shows where the 
s channel and ai channel physical regions are and how to continue between them. 

t channel 
I 

s channel 

Figure 2. General two-body scattering process. 

Analytic continuation 1 , ,/ - \,, ; channel physics 

/ 
f '\ Vu ,' VS 

U channel physics 

Figure 3. The s and U channel physical regions in the complex v plane. 
\. - , 

Analytic continuation also relates the formation of a t channel resonance (in the 
physical region t > threshold, U and s generally < 0) with the exchange of a t channel 
particle in high energy forward s channel scattering (where s > 0, t < 0,  u z - s).  
A continuation in both s and t is needed; fortunately Regge poles offer a simple way 
to do it as shown below. 

2.2. Regge poles 
A stable particle in the t channel implies a pole in the scattering amplitude 

A(s, t ,  U )  at t = m2. For a resonance, the pole lies off the real axis. T o  describe low 
energy t channel scattering near the resonance, we can use a Breit-Wigner form like 

A =  PACOS 0,) + background t - m2 + imF 
where m, F, J are the resonance mass, width and spin. This is for particle formation. 

However there are difficulties in adapting equation ( 2 . 3 )  for particle exchange. 
If we simply continue the pole term to t < 0 using 

2s + t - 4M' 
t -4M' cos e, = 

where equal external masses RI are assumed for convenience, we find A c s J  and 
hence daldt ~ s ~ J - - 2  in high energy s channel scattering. For J >  1 this conflicts both 
w-ith experiment and with theoretical bounds. 
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/ 
/ 

t channel p a r t i c l e  
exchange region 

Regge poles offer an alternative that approximates to equation (2.3) for particle 
formation but continues to something more acceptable for particle exchange. 
-4 t channel Regge pole is characterized by a trajectory function a(t) ,  a residue 
function P( t )  and a signature T = 5 1 ; it gives an amplitude 

> 
t 

t channel part icle formation ( t > O )  

(2.4) 

where P, is a Legendre function of degree a. As we vary t ,  a( t )  varies. IVhen CY 

goes through a physical (integer) value J ,  the vanishing denominator in equation 
(2.4) gives a pole. Half these poles are killed by the symmetry of the numerator ; 
for even (odd) signature, only poles with even (odd) spin J survive. Thus the 
Regge pole generates a sequence of particles, with increasing masses and spins, as 
illustrated in figure 4 for the p trajectory. Both a( t )  and P( t )  are real for t < thres- 
hold, but have imaginary parts for t > threshold, so resonance poles are off the real 
t axis as required. Kear each particle, A(Regge) reduces to the Breit-Wigner form. 

The  signature factor Pa( - cos 8,) + TP,(COS 8,) in equation (2.4) ensures that the 
Regge pole term has a pure symmetry under the interchange cos et ++- cos Bt, as 
needed in physical applications. For example, m scattering with isospin I = 1 has 
an antisymmetric amplitude, and odd-signature Regge poles are appropriate. 

For high energy scattering in the s or U channel, which is the particle exchange 
regime, equation (2.4) reduces to 

l+Te-irrz a: 

s i n m  it) for s+co AS( Regge) = y (2.5a) 

(2.5b) 

where y ( t )  is a product of P( t )  and other factors, and so is an arbitrary energy scale. 
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Note that As and A" have the same phase, coming from the signature factor 
1 + T exp ( - i w )  and y is real. The  corresponding contributions to cross sections 
behave like 

S I 

and similarly in the U channel. This is acceptable provided ~ ( t )  6 1 for t < 0. 
The  relative importance of Regge poles in high energy scattering depends on 

their trajectories a. Elastic scattering is supposed to be dominated by the Pomeran- 
chuk pole P ('pomeron'), with T~ = 1 and ap(0 )  = 1;  this gives constant asymptotic 
cross sections, obeying the Pomeranchuk theorem, us(c.o) = u"(c0). The  pomeron 
seems rather special; no particles are yet associated with it in the region t > O  and 
it may be just a convenient parametrization of diffractive effects. 

They 
appear to have trajectory intercepts a(0)GO.S and slopes dcu,/dt of order 1 GeV-2. 
They control non-diffractive inelastic processes, and give subasymptotic corrections 
to elastic scattering. 

The  t channel Regge pole picture is generally used only for small t (up to a few 
GeV2), ie forward scattering in the s channel. Similarly U channel Regge poles are 
invoked for backward scattering in the s channel. 

2.2.1. Factorization. This is an important property: y ( t )  factors into two parts, 
one for each vertex. For a t channel aE+&d we have 

There are also Regge poles associated with all the known particles. 

This is a familiar property of resonance formation, carried over to particle exchange. 
It interrelates channels, strongly constraining the Regge contributions. 

Spin. The  above account strictly applies to spinless particle scattering. When 
the external particles a,  6, c, d have spin, some of the details change. There are 
now generally several independent amplitudes, referring to different s channel 
helicity states for example; equations (2.5)-(2.8) hold for each separate amplitude. 
Note that all contributions from one Regge pole have the same phase. For factoriza- 
tion, we must be a little more careful; helicities must now be specified at each 
vertex and different kinematic factors in y arise with different helicities. But if 
these kinematic factors are appropriately separated, the s channel helicity amplitudes 
still factorize, to leading order in s. 

Baryon exchanges (half-integral J) bring some further complications : see 
below. 

2.2.2. Exchange degeneracy. A Regge pole refers only to odd-J or even-J states in 
the t channel, because of its signature. However, in special situations Regge poles 
may occur in degenerate pairs, with opposite signatures but with the same trajectory 
and residue functions ; a+ = a-, y+ = y- (or alternatively y+ = -y-) .  This is called 
' exchange degeneracy ', abbreviated to EXD. We shall see that duality constraints 
often imply such EXD relations. 

Striking consequences follow, if a single ExD-pair of t channel Regge poles 
dominates high energy s channel (and U channel) scattering. If their residues y are 
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equal in the s channel, then their residues y in the U channel have opposite signs ; 
adding them together and using equation (2.5) with T = + 1 and - 1 we get 

( 2 . 9 ~ )  

(2.9b) 

Thus the amplitudes are equal in modulus, the phase is real in the s channel, and 
rotates with 01(t) in the U channel. Hence the cross sections are equal, within spin- 
weight factors 

(2Sa+1)-= dos (2S,+l)-&- dou 
dt 

(2.10) 

where Sa, S, are the spins of a, c. Furthermore, since all the helicity amplitudes in 
the s channel have the same real phase (and all the U channel amplitudes have the 
same rotating phase), and since vector polarization effects 9 depend on inter- 
ference terms like Imfi  f; between different helicity amplitudes fi, it follows that 
all such polarizations vanish, ie 

9 s  = 0 (2.1 la) 
P U  = 0. (2.11b) 

The  s and U channels are sometimes said to be related by 'line-reversal', and 
equations (2.9)-(2.11) are called 'line-reversal relations'. 

If more than one ExD-pair of poles are important, most of these results are lost, 
with only the reality of AS and the vanishing of Ps remaining. 

2.2.3. Wrong-signature zeros. I n  the Regge pole amplitudes given by equation (2.5), 
the factors [1+ ~ e x p  ( -  ina)]/sinm~ give a pole when 01(t) goes through a 'right- 
signature' integer-ie even (odd) when T is + 1 ( -  1). For t < 0 such poles are 
unphysical, corresponding to particles with (mass)2 < 0 and giving infinite s and 
U channel scattering, therefore they must be suppressed by dynamical zeros of y( t ) .  
Various mechanisms for zeros of y have been proposed. 

Do such mechanisms also act at wrong-signature integers? If so, since there 
are no poles to kill, they will give zeros of the amplitudes (wrong-signature zeros, or 
wsz). There are plausible arguments for wsz, perhaps the best is based on EXD. 
If a pair of Regge poles are EXD in some channel, a single function y ( t )  must kill the 
right-signature poles for both T = + 1 and T = - 1-ie have zeros at all integers. 
These zeros propagate to other channels via factorization. 

Some authors call wsz simply 'signature zeros' which is a good name. If y kills 
all the poles of l/sinna, we are left just with the zeros of the signature factor 
1 + T exp ( -  ina). 

2.2.4. Baryon exchange. We generally talk about baryons in the U channel, because 
in typical meson-baryon scattering MB -+ MB the U channel @B --f @B has 
baryon quantum numbers while the t channel M%+ BB does not. 

Baryons bring some special features. 
(i) Because particle spins are half-integral, we replace the signature factor in 

equation (2 .5)  by [1+ i exp ( - i7~01)]/cos 7~01, 

(ii) Baryon Regge poles occur in pairs, describing particles with the same 
signature but opposite parity. In  the conventional treatment the two trajectories 01 
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are independent for U > 0 but coincide at U = 0 and are complex conjugates for 
U < 0 ; residues y are similarly related. 

(iii) Since a and y are generally complex for U < 0, the phase of a Regge term is 
no longer given just by the signature factor. 

Exchange degeneracy is more complicated now. However, if pairs of U channel 
Regge poles with opposite signatures have common a and y ,  the net s channel 
amplitudes are still real. Furthermore if a is real the corresponding amplitudes 
for t channel scattering are equal apart from a phase factor i exp ( -  im).  

2.2.5. Regge cuts. A t channel Regge pole is really a pole of the partial wave ampli- 
tude A,(t) that moves in the J plane as t varies. There can also be branch-points 
of A, with associated cuts. Mandelstam showed that cuts can come from diagrams 
where two Regge poles are exchanged, like Figure 5 .  A cut contributes like a 
continuum of Regge poles : 

where ac is the branch point and p is a weight function. 

Figure 5. Double Regge pole exchange that gives a Regge cut. 

Physically, cuts therefore represent double-particle (or multi-particle) exchanges, 
or (where the pomeron is concerned) a rescattering correction. Unfortunately there 
is yet no reliable way to calculate cut contributions, only some ad hoc models. 
However, we know some general properties, such as 

(i) asymptotic behaviour and crossing, like a Regge pole term with a = ac, 

(ii) for two Regge poles ai = ado + a; t ,  the branch point is 
apart from logarithms of s (or U); 

(iii) signature T~~ = TI 7-2 (except for two-baryon exchange when T~~ = - 7-1 T ~ ) .  

If we distinguish the pomeron P from other Regge poles R, these properties 
imply that P + P cuts behave like contributions to P, P + R cuts are like corrections 
(‘absorptive corrections’) to R, and R +  R cuts are in a class of their own (genuine 
2-particle exchanges). 

2.3. Finite energy sum rules 
Finite energy sum rules (FESR) are a useful consequence of analyticity and 

Regge behaviour. If we take an amplitude A(s, t ,  U) at fixed t ,  defining v = (s - u)/2&l 
as the free variable (with M the target mass), A(v) is real analytic in the cut v plane 
of figure 3 .  Cauchy’s theorem now says that J,A(v) dv = 0, integrating round any 
closed contour C that does not enclose any singularities. 
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Suppose we take the contour C in figure 6. Physics is on the real axis, so the 
upper and lower semicircles of C are apparently unphysical. But if we assume the 
Regge behaviour of equation (2.5) for the high energy physical region with / V I  A‘, 
writing vu in place of ( S / S , , ) ~ ,  we can continue this prescription analytically into the 
complex v plane and use it to evaluate the unphysical contours in terms of physical 
(Regge) parameters. Thus Cauchy’s theorem relates integrals of low energy 
physical amplitudes (along the real axis with I v 1 6 N )  to high energy Regge para- 
meters. 

Figure 6. The integration contour C. 

We can do the same with any moment v n A ( v )  instead of just A ( v ) .  The dis- 
continuity across the cut is 2ivn Im A, and so the resulting FESR is 

(2.13) 

Here the sum is over Regge poles i with T~ = + 1 ( -  1) only when n = odd (even); 
contributions of the opposite signature vanish, through the symmetry of the 
integral. 

This FESR looks even simpler if the integrand vn A is precisely antisymmetric in V. 

For example if A ( v )  = - A ( v )  and n is even, the left and righthand cut integrals are 
equal, and we get 

(2.14) 

This is the simplest prototype FESR, found in textbooks. Many refinements are 
possible, such as introducing more sophisticated weight functions than vn, but the 
idea of relating low energy integrals to high energy Regge parameters remains the 
same. I t  is a starting point for duality. 

2.4. Exotic channels 
Resonances are found to occur in some channels and not in others. Empirically, 

the channels where they are found are exactly those of the quark model that des- 
cribes mesons and baryons as quark-antiquark (qq) and three-quark (qqq) states, 



Duality 1045 

I I 

-2  -I 0 

respectively. Channels are said to be ‘exotic’ if they do not fall into the q 4  or qqq 
categories. The  absence of observed resonances in exotic channels is an important 
systematic of low energy scattering and an important constraint on theory. 

I I > 
I 2 1 3  

- I  0 

0 -‘i @ 

-I 0 

Figure 7. Examples of meson and baryon SU(3) octets, displaying hypercharge Y and isospin 
component I3 (charge Q = I3 + 3Y). 

1 

Figure 8. SU(3) decuplet of baryons, incorporating the A(1236), Y:(1385), E*(1530) and 
R(1672) isospin multiplets. 

The  SU(3) representations of allowed meson resonances are thus [l] and [8], 
while [l], [SI and [lo] are allowed for baryons. Examples of meson and baryon 
octets and decuplets are shown in figures 7 and 8, exhibiting the isospin and hyper- 
charge quantum numbers. The  isospin-zero member of an octet has the same 
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isospin quantum numbers as an SU(3) singlet, so with SU(3)-breaking these two 
states become mixed. This happens for instance with the 7 and 7’ pseudoscalar 
mesons. 

The  quark model forbids certain assignments of G parity because of the charge 
conjugation properties of the q?j system. For spin J and isospin I ,  it forbids natural 
parity states with P = (-)” and G = ( -)J-lL1, and the unnatural parity state with 
J = 0, P = - 1 and G = + 1. No resonances with such quantum numbers have 
been found. They are called ‘exotics of the second kind’, to distinguish them from 
SU(3)-exotics. 

For an introduction to the quark model, see Dalitz (1966). 

3. Phenomenological versions of duality 
We have seen that the high energy s channel scattering is described well by the 

leading Regge exchanges in the t channel. One can, of course, define a Regge back- 
ground consisting of lower lying Regge singularities and a genuine background 
integral (the latter representing the fact that an expansion of the scattering amplitude 
in terms of Regge singularities converges only asymptotically), and thereby one can 
build up a formal Regge description of the scattering amplitude at any given energy. 
Alternatively one can formally define a non-resonant background and add to the 
s channel resonance contributions to describe the scattering amplitude at any given 
energy. 

One would thus have established a complete equivalence between the s channel 
resonance and t channel Regge pictures. Such a formal equivalence would, how- 
ever, be hardly useful since the background is only a euphemism for our domain of 
ignorance in the resonance or the Regge picture. Any meaningful connection 
between the two pictures has to rely on a possible overlap between the leading 
Regge exchanges in the t channel and the resonance part of the s channel description. 

It has been recognized for a number of years now that the leading Regge 
exchange provides a good description of the scattering amplitude over a wide energy 
range down to a few GeV. A particularly simple example is the charge exchange 
pion nucleon scattering. The  t channel quantum numbers suggest that the leading 
Regge exchange here is simply the p pole, and possibly the p-P (pomeron) cut, 
which has the same quantum numbers and a similar effective trajectory as the p pole. 
Phenomenological analyses of the charge exchange T-N scattering data have shown 
that the leading Regge exchange is adequate down to a laboratory momentum of 
3 GeV, ie to a centre of mass system energy of about 2.5 GeV. 

In the context of the s channel resonance picture, however, the role of the 
background has been the subject of a long controversy. Until a few years ago, it 
was universally believed that the background must constitute the bulk of the scatter- 
ing amplitude from a few hundred MeV upwards in the laboratory momentum. 
This was partly due to the apparent smoothness of the scattering amplitude in this 
range (eg the solid line in figure lo), and partly this was a hangover from our 
understanding (or rather the lack of it) of the resonance spectrum in the early 
sixties, when a few low-lying resonances (essentially the ones shown in figures 7 
and 8) were believed to exhaust the entire spectrum. Obviously the background 
must describe the scattering amplitude in a range where there are no resonances. 
However, our understanding of the resonance physics has changed radically since 
then. Rich arrays of resonances have been discovered in the entire sub-Regge region 
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(ie energies up to 2-5 GeV in the nN system) and beyond, and in many cases their 
spins and widths have been measured. One striking result of these analyses is that 
these higher mass resonances are usually broad and closely spaced so that in any given 
channel they may overlap with each other to simulate a smooth scattering amplitude. 

t = O  2 0 1  

- 2 o t  
Figure 9. Comparison between the resonance (2) and Regge (3) contr.-utions to ImA’(-) 

at t = 0. Curve (1) corresponds to the amplitude obtained from the total cross section 
difference (Dolen et al 1968). 

f 1236 1400 1525 1670 1688 1920 2190 

PI ( GeV) 

Figure 10. Comparison between the resonance (1) and Regge (2) contributions to Im I 3 - l  at 
t = 0. The individual resonance contributions are shown by the broken lines (Dolen 
et al 1968). 

As a specific illustration of this phenomenon, the two invariant amplitudes A’(-), B(-)  
for charge exchange scattering are shown in figures 9 and 10 against their resonant 
contribution. These illustrations are from Dolen et al (1968) who have obtained 
the resonance contributions from a Breit-VC’igner type formula (see equation (3.2) ), 
with the mass, width and spin parameters taken from the standard Rosenfeld table. 
These suggest that the s channel resonance contributions approximately saturate 
the charge exchange n-N amplitudes over a pretty wide energy range. I n  contrast, 
similar analysis for the A’(+) and B(+) amplitudes, corresponding to vacuum quantum 

45 
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number exchange, suggest a substantial background contribution over the same 
energy range (Harari and Zarmi 1969). We shall see later that the duality hypothesis 
requires such a background contribution for the vacuum exchange amplitudes 
(essentially to describe the pomeron exchange), while requiring resonance satura- 
tion for non-zero quantum number exchange. Note that the amplitude in this 
context refers to the imaginary part of the amplitude alone, with which we shall 
mostly be concerned in this section. 

I t  should be emphasized, of course, that our knowledge of the resonance 
spectrum is too scanty to provide any convincing evidence either in favour or 
against the resonance saturation of scattering amplitudes. Even if all the resonances 
are detected and their spins and widths measured, there is an intrinsic ambiguity 
in the exact form of the Breit-Wigner expression when the widths involved are 
rather large, and the resulting resonant amplitudes (eg those of figures 9 and 10) 
will share this ambiguity. The  results of these figures, nonetheless, provide a 
reasonable basis to hypothesize that the resonances saturate the scattering ampli- 
tudes (except for vacuum exchange) over a wide energy range so as to overlap with 
the leading Regge domain, and to look for aposteriori justification. This is essentially 
the duality hypothesis and the extent and the nature of this overlap define the 
various versions of this hypothesis. We shall discuss the hierarchy of these duality 
hypotheses in increasing order of severity. 

3.1. Global duality 
This hypothesis assumes the resonance contribution to describe the amplitude, 

in an average sense, over the sub-Regge energies. For n N  scattering, for instance, 
this covers the 0-3 GeV range in laboratory momentum PL (PL=v for small t ) .  It 
therefore only involves a marginal overlap between the resonance and the Regge 
pictures. 

Under this hypothesis the FESR (equation (2.13)) reads 

With a standard Breit-Wigner formula for the resonance amplitude 

and a narrow resonance approximation for the energy denominator, equation (3.1) 
essentially reduces to 

(3.3) 
k i 

where the summation k is over all the s and U channel resonances in the interval 
- N <  v < N ,  whose mass, spin and coupling are denoted by mk, Jk and Pk. 

The spin of the external particles involve some non-essential complications 
which we ignore for the present. 

One should note that analyticity and crossing play a crucial role in deriving the 
global duality relation (3.1) or (3.3), which make it possible to relate the leading 
Regge exchange to the contribution of resonances belonging to the sub-Regge 
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energy range. Equation (3.3) should hold for any even (odd) n, with the summation i 
corresponding to even (odd) signature trajectories. 

However, this relation is only an approximate relation. Thus the prediction of 
a single moment sum rule (corresponding to a single value of n) is expected to be 
more reliable than those using several n values. Also the latter predictions are not 
exactly in the spirit of global resonance saturation. For varying n within a fixed cut-off 
N is essentially equivalent to varying N (with a fixed n), which presupposes 
resonance saturation in a somewhat more local sense. Nonetheless such predictions 
have been found very useful, particularly for studying the trajectory function ai, 
and we shall discuss them along with those using single moment sum rules. 

Dolen et a1 (1967, 1968) were the first to use the concept of global duality. 
They used this in an extensive study of the nN charge exchange amplitudes. It is 
illustrative to discuss some of these results. The  charge exchange cross section is 
related to the invariant amplitudes A'(-) and B(-),  corresponding to t channel 
helicity nonflip and flip, by 

at high energy and small t (see Singh 1963). The  optical theorem gives 

(3.5) 

The  s-channel helicity nonflip is also described by A' in this limit, whereas the flip 
amplitude is given by 

A(-, = A'(-) - vB(-)* 

Both A'(-) and vB(-) have the asymptotic Regge behaviour vu and are antisym- 
metric under s-U crossing, so that they obey duality sum rules of the type 

(3.6) 

and 

for even n. 

3.1.1. Resonance correlation. One application of global duality is to use the leading 
Regge (in this case p)  parameters on the right hand side in order to correlate the low 
energy resonance couplings on the left. Without going into detail one can see 
qualitatively the success of such a scheme. The  high energy charge exchange cross 
section suggests a significantly larger flip residue of p compared to the nonflip, 
which also agree with the nuclear form factor estimates. Since these residues are 
built up from the same set of s channel resonances, one should expect from (3.7) 
and (3.8) that these contributions should be strongly correlated, so as to reinforce 
each other for vB and mutually cancel for the A' amplitude. This, indeed, is the 
case as we see from figures 9 and 10. These figures correspond to the left hand side 
of (3.7) and (3.8) for the lowest moment ( n  = 0) case. 

45* 
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3.1.2. Regge parameters. The  second, and perhaps the more important application 
of these duality relations is to estimate the Regge parameters on the right hand side. 
For instance the trajectory and residue functions can be calculated by feeding in the 
baryon resonance parameters on the left hand side of (3.7) and (3.8). This would 
yield, in particular, the p mass and coupling constants. The  flip amplitude B(-)  is 

I;' 015 
:\3 /:l5, F32 F r ,  G17 , 

?,,o P I  2.0 3.0 s(GeV/c)' 5.0 

0 +AAF 
0.2 0 0 Crossover in 

. v+p w d t f s  
elastic v-p and 

0 

g I 
O 

0 

0 0 - 
DIP in .nN CEX 0 

0 
w a t  

Resonance zeros 
O =  A' 
U =  B 

Figure 11. The prominent T-N resonances have zeros in A' near t N - 0.2 (the cross-over 
region) and in B near t N - 0.5 (the dip region) (Berger and Fox 1970). 

the more suitable for this purpose. High energy scattering data suggest this 
amplitude to have negligible contamination from cuts, so that the right hand side 
of (3.8) contains a single term 

Thus the ratio of the left hand integral for n = 0 and n = 2 determines the 
trajectory a,,. The trajectory so evaluated (Dolen et a1 1968) gives 

t 4 t )  
mPz 1 k0.3 
0 0-4 k 0.2 

0 - 3  5 0.3 - 0.2 GeV2 

and passes through zero in the t-range - 0.3 to - 0-6 GeV2. This agrees well with 
the trajectory obtained either from the Chebv-Frautschi plot or from the high 
energy data. Similarly the residue function, calculated from the lowest moment 
sum rule, has been shown (Dolen et a1 1968, Barger and Phillips 1969a, Harari and 
Zarmi 1969) to agree very well with the high energy estimates in the negative t 
region and with the on-shell coupling constant at t = mp2.  In  particular the zeros 
of the baryon resonance terms (associated with the first zeros of the corresponding 
Legendre functions), as displayed in figure 11 (Berger and Fox 1970), all lie in the t 
range of -0.4 to -0.6 GeV2. This means that the resulting residue must also 
have a zero in the same region, especially as the resonance contributions are all 
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additive. This agrees remarkably with the wrong-signature zero that is expected on 
theoretical grounds and confirmed by the high energy data. 

Similarly the zeros of the baryon resonance terms in the nonflip amplitude occur 
mostly in the t range of -0.1 to -0.3 GeV’, which would lead to a zero in the 
leading Regge contribution in this interval. A cross-over between the high energy 
n- p and n+ p differential cross sections near t about - 0.2 GeV2, indeed, suggests 
such a zero in the leading Regge contribution to I m  A’(-). On the basis of factoriza- 
tion constraints it is generally believed that this zero does not arise from a vanishing 
of the p residue, but due to a cancellation between the p pole and the p-P cut terms. 
We shall come back to this point at the end of this section. It suffices to point out 
here that such a zero will move very slowly with energy, due to the almost identical 
energy dependence of the two terms. Therefore, such a zero will be phenomeno- 
logically indistinguishable from a residue zero in the analysis of I m  A’(-). 

3. I .3. Bootstrap. The interrelation between the resonance and Regge contributions 
gives a linear bootstrap scheme if the same trajectory appears in the formation (s) 
and the exchange ( t )  channels. Here the trajectory cx and residue y functions can be 
determined through self-consistency, from relations of the type (3 .3) .  Such rela- 
tions cannot fix the overall normalization of the residue function in which they are 
linear. Besides, one does not expect to match the trajectory and residue functions 
over the same range of four momentum square, since the latter is negative or 
marginally positive on the right hand side (ie t ) ,  and corresponds to large positive 
values on the left (ie s). With an analytic parameterization of the trajectory and 
residue functions in terms of the four momentum squared, however, they can be 
completely determined by matching the two sides of the duality relation, apart 
from the overall normalization. 

Such a self-consistency scheme for the meson trajectory in the s and t channels 
was first investigated by Mandelstam (1968) in the context of baryon-antibaryon 
scattering with some success. The  most remarkable result in this line, however, 
was that of Ademollo et aZ(l967) on the p bootstrap in nn--+nw. For this reaction 
there is only one invariant amplitude and all the three channels are identical. More- 
over the quantum number considerations single out p from amongst the known 
meson resonances. By setting the cut-off N above the g meson mass (ie the next 
recurrence of p), one obtains a duality relation like ( 3 . 3 ) ,  with the p a n d g  couplings 
on the left and the p trajectory residue on the right. With a simple parametric 
representation for the trajectory and residue functions, self-consistency was 
achieved over a large range of t. Also the p parameters, so obtained, had the right 
phenomenological features. The  self-consistency was lost when the scheme was 
repeated by increasing N to include still higher recurrences of the p. However, it 
could be restored by adding low spin mesons at the mass of the p meson and its 
higher recurrences. The  plausibility for such lower spin partners had been 
recognized for some time and was referred to as the daughter structure. The  above in- 
vestigation demonstrated that a linearly rising p trajectory cannot be self-sustaining, 
but a self-sustaining scheme can be achieved with a linearly rising p together with 
its daughter structure. It is worth noting that this result led subsequently to the 
construction of the famous Veneziano model. 

3. I .4. Exoticity constraints. Writing the global duality relation for exotic channels 
gives useful information on the internal symmetry of the Regge trajectories (Roy 
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and Suzuki 1969). T o  illustrate this point, we consider some specific examples. 
The  elastic KOA++ amplitude is exotic, both in the s and the U channels. Hence by 
(2.13) and (3.3) the even and odd signature Regge exchanges in the t channel must 
separately vanish. This means that the vector and tensor trajectories should 
mutually cancel. Moreover, using the duality relation (3.3) for two different 
moments would require the cancellation to occur amongst a degenerate set of vector 
(so also tensor) trajectories. This implies that the trajectories must either occur in 
degenerate isoscalar-isovector pairs so as to cancel in the K 0 F + A + ~ F +  channel, 
or else must decouple from this channel. The  Chew-Frautschi plot for the vector 
and tensor nonets shows degenerate p-w and f-A,, whereas 4 and f occur singly. 
Thus 4 and f should decouple from this channel (and similarly from the rr+ rr--t!2Q 
channel). The  4, f decoupling from the non-strange meson and baryon vertices is 
a well-known result of the quark model with ideal mixing, and is also supported 
experimentally. Since the pomeron cannot have an isovector partner it must either 
decouple from the above reactions or else be dual to the non-resonant background. 
The  first alternative, corresponding to an asymptotically vanishing (sT, is unaccept- 
able for many theoretical and phenomenological aspects of diffraction scattering. 
Thus the pomeron must be dual to the non-resonant background. We shall come 
back to this point in the context of semilocal duality, on the basis of which this 
assignment was first suggested. 

The  A,-f cancellation requirement, together with the SU(3) coupling relations 
for the tensor octet, gives the f-f' mixing angle by 

(3.9) 
1 tan8  = -. 

The  p-w cancellation on the other hand is identically satisfied by the SU(3) 
symmetric vector couplings, irrespective of the mixing angle. This is because the 
SU(3) singlet vector meson cannot couple to the KR channel. However, applying 
similar considerations to the reaction KOA++-tK*OA+7, leads to an identical angle 
for w-4 mixing. It should be noted that the observed vector and tensor meson 
masses and the Gell-Mann-Okubo mass formula also leads to the same mixing 
angle. 

Of course the above mixing angle as well as the 4, f '  decoupling condition 
and the p-w and A,-f degeneracies are standard results of the quark model. They 
constitute the well-known quark nonet scheme. Similarly the absence of resonances 
in the exotic channel is a part of this quark model scheme, as we saw in the last 
section. However, the significant aspect of duality is the way it relates the above 
set of results to the absence of exotic resonances without involving any assumption 
about the quarks. 

Applying similar considerations to baryon-antibaryon scattering leads to a 
radically new result ; namely, there must be exotic resonances in baryon-antibaryon 
channels. Consider for instance the charge exchange reaction AT E+-tA++ go. 
Here the U channel is exotic being a di-baryon state, and the s channel is also exotic 
due to double charge. However, the t channel vector (or tensor) contribution 
cannot vanish, since only p (or A,) is exchanged, therefore there should be s channel 
resonances to be dual with the exchanged p contribution. Experimentally very 
little is known about the resonance structure in the baryon-antibaryon channels. 
The  observed resonance spectrum and the duality results for meson-meson and 
meson-baryon scattering suggest, however, that even if such resonances are 

J2 
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present their coupling to the mesonic channels must be very weak. Finally it 
should be noted that this exotic resonance prediction follows from a single moment 
rule and is therefore a consequence of global duality, even in a strict sense. Historic- 
ally, however, they were first obtained on the basis of the semilocal version of 
duality (Rosner 1968). 

3.2. Semilocal duality 
The  hypothesis of resonance saturation in the sub-Regge region (0 to N )  is now 

extended to cover a higher energy range ( N ' )  so that there is a substantial overlap 
between the resonance and the leading Regge descriptions. Moreover the resonance 
saturation is assumed to be somewhat more local. For instance, the amplitude in 
the interval N to N'  is assumed to be averaged by the resonance contributions over 
this interval; and such an averaging by the local resonances is assumed to hold for 
several intervals of energy (ie several values of N' ) .  From the general shape of the 
resonance contribution to the imaginary part of an amplitude (see figure 10) we see 
that such a local averaging should be very reasonable as long as the interval is large- 
a few GeV say. In  particular it is reasonable to assume that the resonances from 
the negative v region (U channel resonances) do not affect the amplitude in the 
v >  N region, as long as one deals with the imaginary part only. This assumption 
is vital to the results of semilocal duality. 

The  overlap between the t channel Regge and s channel resonance contribu- 
tions in the interval N to N' can be expressed as 

(3.10) 

where the summation i is over both even and odd signature Regge exchanges. 
This relation evidently does not involve any considerations of analyticity or crossing. 
I n  terms of predictive power equation (3.10) is much stronger than the global 
duality relation (3.1) since it relates the t channel Regge exchange to s channel and 
U channel resonances separately. It is, in fact, the most widely used version of 
phenomenological duality. 

3.2.1. Exchange degeneracy and two-component duality. The  even and odd signature 
Regge contributions should cancel each other in equation (3.10) whenever the 
s channel is exotic. Moreover this cancellation must occur separately for each set 
of degenerate Regge trajectories, since (3.10) should hold for several intervals of 
energy. This means that opposite signature Regge trajectories should occur in 
degenerate sets. This is the exchange degeneracy (EXD) result, mentioned in the 
last section. 

Since the pomeron does not (and on general theoretical grounds should not) 
have an exchange degenerate partner, it would have been required to decouple 
from such exotic channels as the elastic K+ p or pp scattering, which is inadmissible 
in view of their large asymptotic cross sections (figure 12). This has led Freund 
(1968) and Harari (1968) to postulate the two-component theory of duality, where 
the pomeron is dual to the background and all the 'normal' Regge trajectories are 
dual to the s channel resonances, as mentioned earlier. A number of interesting 
EXD results amongst the latter follow from considering exotic channels. 
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Figure 12. Total cross sections of T+ p, K* p, pp and pp as functions ofplnb. K+  n and pn data 
are indistinguishable within error bars from K T P  and pp data. The pomeron term 
seems to show a slight increase for K + p  around 50 GeV/c and for pp around 
1000 GeV/c (not shown). 

3.2.2. Weak exchange degeneracy. A number of exotic channels in meson-meson 
scattering are listed below, alongside the possible Regge exchanges. 

Exotic channel Regge pole exchange 

7i-?T+ --fT1_T+ p , f ;  f '  
T+ K+ +T+ K" p3 f; f' 
K+ KO + KO K- P ,  A2 
K+ K+ + KT KT P , A ~ ;  w , f ;  $ , f '  
T+ K+ + K+ T+ K" K*" , 
T T p + - - f p T v +  U, A,; 4 

The only EXD solution to these channels consistent with the observed degeneracy 
breaking between w and + (orf andf ' )  is 

(3.11) 
OIp = CYf,* 

Such an EXD scheme between the trajectory functions is usually called weak EXD. 
The  weak EXD relation given by equation (3.10) is satisfied extremely well by the 
observed vector and tensor trajectories (figure 13). 

3.2.3. Strong exchange degenevacy. The EXD condition between the residue func- 
tion is referred to as strong EXD. The  strong EXD relation can be tested better in 
meson-baryon or baryon-baryon scattering, where one has direct experimental 
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information on the scattering amplitudes. We should only point out two significant 
results of the last subsection, which also follow directly from the above list of 
reactions (Chiu and Finkelstein 1968). The  exotic channels ~ + T + - + x + ~ T +  and 
n+ p- --f p+ nf require r$ and f' decoupling from pn and nn channels respectively. 

Figure 13. Exchange degenerate meson trajectories. 

Moreover, the four top channels give, through factorization, 

Y p ~ + ~ -  = 

YfK-I<- = YAzK'K- 
(3.12) 

which are identical to the SU(3) coupling relation with the standard U-$ (or f-f') 
mixing angle given by 

1 
tan8 = -. 

42 
The strong EXD relations for the exotic channels K + p - + K + p  or pp+pp  

suggest that the 'normal' Regge contribution to the imaginary part of these ampli- 
tudes (or to the corresponding total cross section crT by ( 2 . 7 ) )  should vanish. Then 
the total cross section in these cases should be given entirely by the pomeron term 
and should therefore remain constant over the entire Regge domain. I n  contrast 
the aT for the non-exotic channels K-p or pp should approach the asymptotic 
value from above, since the resonance terms, generating the 'normal' Regge part, 
should all be positive. Moreover the differences (crF'p - ag'n) and (u$P - OPTn) 

should vanish over the entire Regge domain in contrast to the non-exotic case. 
All these results agree extremely well with the total cross section data (figure 12). 

3.2.4. Wrong-signature zeros. Another interesting consequence of strong EXD is the 
wrong-signature zero (wsz), described in the last section. For instance the A, 
residue in K+ n -+ KO p(ya2) should vanish at t 2: - 0.5 GeV2, corresponding to 
OIAz.- - 0, in order that the amplitude (see 2.5a) does not diverge in the scattering 
region. Therefore by strong EXD y p  should vanish at the same point, and by SU(3) 
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this should propagate to the p residue in n--p+ron. Since a = 0 is a wrong- 
signature point for p, the amplitude (equation 2 . 5 ~ )  should vanish at this point. 
Such a zero is, indeed, a very well-known feature of the r - p  charge exchange 
scattering data. 

3.2.5. Exchange degenerate baryons. Duality considerations applied to exotic meson- 
baryon scattering also lead to exchange degeneracy between baryon trajectories. 
For instance duality in backward K+ p scattering (ie K+ p -+ pKf) leads to exchange 
degeneracy between the hyperon trajectories (Schmid 1969, Barger and Michael 
1969). Some exchange degenerate sequences can be readily recognized from the 
Chew-Frautschi plot of figure 14, like the A( 11 15, &+)-Y$( 1520, $-) sequence. The  
situation for the baryon trajectories, however, is not as clear as the meson case. 
We shall discuss this situation further, together with the baryon-antibaryon 
scattering case, in the next section. 

4 / 

0 2 4 5 8 
Mass2 ( G e V 2 )  

Figure 14. Exchange degenerate baryon trajectories. 

3.3. Local duality (high energy version) 
The  resonance saturation is now assumed to be over the same range of energy 

as in the semilocal version, but the saturation is assumed to be much more local. 
This means that over any small subsection of the interval N to N’, whose width is 
given by the typical separation between the consecutive resonance masses, the 
amplitude is approximated by a single resonance contained in the subsection. 
Note also that, although this subsection is expected to contain a tower of degenerate 
resonances (the daughter structure), the dominant contribution is assumed to come 
from a single spin state. Thus one assumes a local overlap between the t channel 
Regge exchange and the local resonance contribution, throughout the range I\- to N’. 
But the leading Regge exchange is characterized by fixed t structure (eg the wrong- 
signature zero), whereas a typical s channel resonance term has a structure given 
by its spin and cos B (eg by Pj(cos 8) of equation (3.2)). Thus the assumed overlap 
implies a strong correlation between the mass and the spin of the dominant 
resonances. 

3.3.1. Peripheral resonances. The  above correlation has been analysed in detail for 
the n-N charge exchange scattering. Here the dip in the cross section comes from 
a zero in the amplitude A around t _N - 0.5 GeV2 and is associated with the wsz of the 
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p pole exchange. A and A' are the s channel helicity flip and nonflip amplitudes. 
According to a well-known identity, the Legendre function associated with a spin j 
resonance can be approximated by the Bessel function Jl[(j+ 3) sin 6/21 and 
Jo[(j+ 4) sin 6/21 in the flip and nonflip case, for large j .  Thus a resonance of spin j 
and mass WR has a zero in A at 

(3.13) \ i - t  

W R  

associated with the zero of Jl(x) at x = 3.8. I n  order to match with the wrong 
signature zero at t N - 0.5 GeV2, the dominant resonances must be on a line 

(3.14) 

( j +  4) sin $6'2: ( j +  H )  = 3.8 

( j +  i) WR-l- 5 GeV-1 = 1 fermi. 

These are called peripheral resonances, since they correspond to 

, j (2qR)- l=  1 fermi (3.15) 

(qR is the s channel centre of mass system momentum at the resonance mass), which 
is equivalent to scattering from the periphery of a disc of constant radius z 1 fermi. 

Figure 15. Schematic representation of peripheral resonances. Although the resonances are 
expected to lie on linear trajectories accompanied by sets of daughters, the prominent 
ones for the elastic channel are assumed to lie on the parabola J N Y ,/S. Such a resonance 
pattern would correspond to scattering from the periphery of a disc of radius r .  

Thus, although the nucleon resonances are supposed to lie on linear trajectories 

3 ccsR (3.16) 

accompanied by the lower spin daughters, the prominent elastic resonances, 
according to this hypothesis, should be on a parabola 

.i Jsn. (3.17) 

This is shown graphically in figure 15. 
Of course, it is by no means essential to have a peripheral resonance structure 

(equation (3.17)) in order to reproduce the fixed t zeros. Parent and daughter 
resonances lying on linear trajectories could alternatively be correlated so that they 
reproduce the wrong-signature zero at t E  -0.5 GeV2 as in $6. However, if the 
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dominant resonances occur on a peripheral curve, this would imply an interesting 
correlation between the zeros of the helicity flip and the nonflip amplitudes. For 
instance, the peripheral nucleon resonances of equation (3.14) imply a zero in the 
A’ amplitude at t2: -0.2 GeV2, corresponding to the first zero of the J,(x) at 
x = 2.4. Indeed such a zero is confirmed by the ~ * - p  cross-over phenomenon, as 
we mentioned earlier. 

On the basis of the above success, local duality has been invoked (Kugler 1970, 
Harari 1971) to suggest a peripheral imaginary part as a general feature of any 
scattering amplitude, apart from the pomeron component. Such a system is often 
referred to as geometrical duality. I t  seems to have reasonable support from high 
energy data. 

3.4. Local duality (low eiaergy version) 
I n  this version a local (or sometimes semilocal) overlap is assumed between the 

resonance and the leading Regge descriptions, even over the sub-Regge domain 
(0 < v > N ) .  From a theoretical standpoint this is perhaps the least reliable version 
of duality. For even if the resonance saturation were good everywhere there is little 
a priori ground to assume that the leading Regge terms describe the low energy 
amplitude, in any average sense. In  particular the s channel integral 

A dv (3.18) 

is expected to have contributions not only from the leading Regge exchanges (ie 
those in equation (3.10)), but also from certain wrong signature fixed poles, which 
do not affect the high energy scattering amplitudes (Schwarz 1967). Only in the 
specific case of an odd crossing amplitude does this latter contribution drop out as 
in equations (3.7) and (3.8). I n  certain dual models like the Veneziano model such 
fixed pole contributions are expected to be significant when neither of the two 
resonance channels (s and U )  is exotic. 

Nonetheless, considerable work has been done to check phenomenologically if 
the leading Regge exchange does describe the low energy resonances, either locally 
or through integrals like (3.18). The  success here has been rather mixed. 

First of all, the fixed t structures of the leading Regge exchange would suggest 
the dominant s channel resonances to be peripheral, as described earlier. A number 
of the elastic resonances in the nN channel are, indeed, seen to be peripheral. One 
can see this directly from figure 11 where individual resonances are seen to possess 
the fixed t zeros. A similar systematics is seen to hold for KN scattering as well 
(Fukugita and Inami 1972). 

3.4.1. Aygand loops. A more ambitious programme for studying local duality was 
by projecting out a partial wave of the Regge amplitude and then analysing it on the 
phase plot as a function of energy (Schmid 1968). 

In  the phase plot, one plots the imaginary part of the partial wave amplitude 
versus its real part at various energies. While passing through a resonance mass, 
such a plot is expected to describe a circle anticlockwise with the top point of the 
circle being reached at the resonance mass s = m2. One can deduce these features 
directly from the resonance amplitude of equation (3.2). These are the so-called 
Argand loops. 
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The  partial waves projected out of the p-exchange term have been shown to 
describe such loops in the phase plot (Schmid 1968, Chiu and Kotanski 1968a,b). In  
fact, one can in this way generate a set of nucleon resonances and match it with the 
1920-2190-2920 series (Schmid 1968). The  relevance of such loops to actual 
resonances, however, is very much an open issue (see eg Collins et a1 1968). Apart 
from certain theoretical problems, the generated resonances seem to be too broad 
and globally displaced in mass compared to the actual ones. 

If the integral (3.18) is to be described by the leading t channel Regge exchanges 
then the resonance contribution to such an integral should mutually cancel if the 
amplitude A has an exotic t channel. Such a cancellation amongst the low energy 
resonances has been observed in the n--p+n+A- amplitude (Kernan and Sheppard 
1969), but one also has counter examples like K-p+n+C-  (Ferro-Luzzi et a1 1971) 
or x-x- ->x-T+ where such cancellations do not seem to occur. 

N’e do not intend to make a critical evaluation of the above phenomenological 
successes and failures. We should simply remark that the failures can mostly be 
traced to the fixed pole effects (Roy 1971). With the correct crossing amplitude, the 
leading Regge terms seem to provide a good semilocal average of the low energy 
resonances. 

3.5. Concluding remarks 
3.5.1. Pole-pole against pole-cut duality. The  first remark concerns the nature of 
the leading Regge exchange. T o  start with, the duality hypothesis was postulated 
between the resonance and the Regge pole contributions. On a phenomenological 
level, however, certain features of the scattering amplitude seem to be interpreted 
more naturally as pole-cut interference effects rather than with pole terms alone. 
One such effect is a zero in ImA’(-) at t e  -0.2 GeV2-the cross-over zero- 
which is associated with the p and p-P cut cancellation. We have seen earlier that 
the dominant resonance contributions to A’(-) share this zero. Similarly the forward 
photoproduction amplitude shows a sharp spike, presumably associated with the 
x pole and the T-P cut interference, that seems to be shared by the resonance con- 
tribution to the amplitude as well. 

It seems more natural, therefore, that the resonance contributions are dual to 
the leading Regge contribution, containing both the pole and the pole-pomeron cut. 
However, this may not affect most of the results based on factorization, since it 
should still work over a certain range of t ,  where the pole is expected to dominate. 
Moreover, it has been argued on the basis of the SU(3) singlet and the imaginary 
nature of the pomeron that the SU(3) and the EXD properties of Regge pole terms 
are likely to hold for the corresponding Regge-pomeron cut as well (Barger and 
Phillips 1969b). 

On a more basic mathematical level such an association of resonance poles with 
Regge cuts seems hard to interpret, particularly for large cut terms. From analyticity 
considerations, it is simpler and perhaps more natural to associate resonance poles 
with poles in the angular momentum plane, and the existing formulations of mathe- 
matical duality (3  6) always start with functions having such pole-pole duality. Of 
course unitarization prescriptions have been suggested, which develop a per- 
turbation series in the above function to describe the physical amplitude. I n  
general the higher order terms contain parts having resonance poles dual with 
Regge cuts and also ones with Regge poles dual with background. However, the 
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higher order terms are expected to be small, according to the basic hypothesis of 
duality. I n  particular, it seems very implausible that one can generate large Regge 
cut terms without at the same time breaking the resonance dominance in the energy 
plane. However, one cannot reach a definite conclusion on this subject so long as 
one does not have a reliable model for Regge cuts or even for the pomeron 
singularity. 

3.5.2. Approximate and exact duality. The  various types of equalities between the 
resonance and the Regge contributions described in this section must all be re- 
regarded as approximate equalities only. If any of these equalities were exact it 
would have been superfluous to postulate so many versions of duality-ie all 
versions could be derived starting with global duality. One can see this directly 
from equations (3.7) and (3.8). If these were exact equalities consistency require- 
ments between high and low values of n would require the two sides to match 
locally, but since the relations are only approximate, the resulting consistency con- 
ditions need not hold. (For example the approximate equalities 902: 100 and 
98- 100 should not imply 22: 10.) Hence the semilocal or local versions of duality 
must be regarded as separate hypotheses. 

It is fairly straightforward to see that a finite number of resonances cannot be 
described exactly by a finite number of Regge poles. Apart from the fact that the 
latter would not have any second sheet poles unlike the resonances, the disagreement 
is obvious even in the physical region. The  resonance contributions to equation 
(3.3), for instance, would give a polynomial t behaviour, whereas the Regge con- 
tributions on the right hand side are exponential functions of t. Thus the two 
descriptions may be expected to match only approximately and that too only over a 
limited t range. Phenomenologically this range is roughly taken to be 0 > t > - 1 GeV2, 
where one has most direct evidence of resonance saturation. It is possible, however, 
to achieve a rigorous equality between the two descriptions by invoking an infinite 
sequence of lower lying Regge poles-the daughters-as we shall see in 5 6. 

3.5.3. Interference model. Finally we discuss the so-called interference model, 
which provides an alternative to duality and historically precedes it. I n  this model 
the scattering amplitude in the sub-Regge region was assumed to be given by the 
sum of the resonance and the leading Regge contributions (Barger and Cline 1968). 
This would imply that the resonance contributions to any finite energy sum rule 
(eg equation (2.13)) should mutually cancel out to zero. We have seen from 
figure 10, that this is far from being the case, at least for the charge exchange 
amplitude I?-). Moreover, such a cancellation would be very implausible for the 
elastic amplitudes, since the individual resonance contributions here are all expected 
to be positive on the basis of unitarity. I t  has, however, been pointed out that the 
positivity criterion need not hold if there is a large background, since the resonance 
component need not be unitary by itself. I n  particular it is possible to define 
negative resonance contributions, even for elastic amplitudes, in this way (Donnachie 
and Kirsopp 1969). Nonetheless, it is fair to say that there is little positive evidence 
in the resonance data which would be suggestive of such a cancellation. Moreover, 
if one assumes the interference model, then many striking results of duality like 
EXD have to be dismissed simply as accidental phenomena. Thus, although there 
is no fundamental physical principle which would rule out the interference model in 
favour of duality, the experimental data seem to support the latter overwhelmingly. 
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4 
Ai 

4 

4. Dual classification of hadron spectrum 
This section surveys the application of duality in classifying the meson and 

baryon spectra. These classifications are based on the semilocal version of duality 
as described in the last section. For instance, the absence of resonances in a certain 
channel implies a correlation between trajectories of opposite signatures (and often 
with different internal quantum numbers) in the cross channel-ie exchange 
degeneracy. Thus the absence of resonances in the T+T+ channel provides a cor- 
relation between the vector trajectory p with isospin 1 and the tensor trajectory f 
with isospin 0. This result can be formally derived by using the isospin crossing 
matrix in TT scattering 

2 6 10 AQ 
1 
6 = -  2 3 - 5  A:. 

2 -3  1 A? 
The exoticity condition A: (resonance) = 0 gives a linear relation amongst the 
t channel Regge contributions in AQ, At and A:. Since there are no isospin 2 Regge 
poles, this reduces to a relation between AQ and At. Moreover this relation, as in 
equation (3.10), must be satisfied independently for each set of degenerate tra- 
jectories. There can be four members in each set-positive and negative signature 
trajectories, each with isospin 0 and 1. However, the positive signature isovector 
(eg A,) and the negative signature isoscalar (eg U )  cannot couple to the TT channel 
by charge conjugation parity. Thus the trajectories in the TT channel should always 
occur in a degenerate set of two isospin multiplets-a positive signature isoscalar 
(egf)  and a negative signature isovector (eg p)-with residues related by one linear 
homogeneous relation. This makes it an exactly determined set, apart from the 
overall normalization of the residue. 

The  same procedure can be extended to the case of SU(3), where one sub- 
stitutes the SU(3) crossing matrices and multiplets in equation (4.1). Thus the 
absence of resonances in certain SU(3) multiplets would provide degeneracy con- 
ditions amongst the positive and negative signature Regge trajectories belonging to 
different SU(3) multiplets in the cross channel. Duality and exoticity conditions, 
therefore, would lead to a super multiplet structure, consisting of a degenerate set 
of several SU(3) multiplets with related residues. In  this respect the role of duality 
is comparable to that of a higher symmetry scheme (eg SU(6)). 

The  above procedure has been applied extensively to meson-meson, meson- 
baryon and baryon-antibaryon scattering (Mandula et a1 1969a, Mandula et a1 
1969b, Capps 1969a,b). The  resulting degeneracy relations amongst the SU(3) 
multiplets of mesons and of baryons provide some very interesting comparisons with 
the observed particle spectra. A detailed account of these results is contained in a 
review article by Mandula et a1 (1970). We shall presently discuss the essential 
features of these analyses. We shall omit the details of the various SU(3) crossing 
matrices and the resulting degeneracy equations. Nonetheless, we shall try to make 
the results plausible at each stage, using mostly qualitative considerations. 

4 .  I .  Meson-meson scattering 
4.1.1. Pseudoscalar-pseudoscalar scattering. Let us consider first the scattering of 
pseudoscalar octets (P), where only natural parity exchanges can contribute. By 
particle-antiparticle symmetry in this case all the three channels consist of the five 
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Here 8,, and 8,, are the two independent octet states, coupling symmetrically 
( D  type) and antisymmetrically ( F  type) to the pseudoscalar octets. The  decouplet 
states 10 and 70 are mutually related by charge conjugation. 

One easily sees from the SU(3)  analogue of the s-t crossing relation (4.1) that 
the absence of s channel resonances in the (lO+TO) and the 27 states gives two 
linear homogeneous relations which must be satisfied by a degenerate set of t 
channel trajectories. A priori there could be six independent trajectories corre- 
sponding to 1 ,  8ss and 8,, states for either signature. However, the trajectories 
must have a charge conjugation parity C = + C C for the singlet and the sym- 
metric octet couplings and C = - C, C, for the antisymmetric octet coupling, where 
C, and C, are the C parities of the two external octets. For pseudoscalar-pseudo- 
scalar scattering C, = C, = + 1. Thus only three of the six t channel trajectories 
can couple, namely the positive signature (tensor with C = + 1) trajectory belonging 
to the singlet and the symmetric octet states and the negative signature (vector with 
C = - 1 )  belonging to the antisymmetric octet. Therefore with two linear homo- 
geneous relations this reduces to an exactly determined set of three degenerate 
trajectories, which are the vector octet with F type coupling, the tensor singlet and 
the tensor octet with D type coupling. 

4.1.2. Pseudoscalav-vectov and vectov-vector scattering. Next consider the s channel 
pseudoscalar octet-vector octet scattering PV-t VP, where both natural and un- 
natural parity exchanges contribute. Owing to the linear nature of the crossing 
relations, one can separate the natural and unnatural parity exchanges in the t 
channel and apply identical duality considerations to each. Then for the natural 
parity exchange the situation is very similar to the previous case, except that here 
C, = - C, = + 1. Thus the solution here consists of a degenerate set of the tensor 
octet with F type coupling, the vector octet with D type coupling and a vector 
singlet. Therefore the combined duality solution to the pseudoscalar-pseudoscalar 
and the pseudoscalar-vector scattering implies that the natural parity meson 
multiplets must always occur in a degenerate set of four with mutually related 
residues-ie as exchange degenerate vector and tensor nonets. Alternatively, of 
course, one could have a bigger (and clumsier) solution where the two degenerate 
sets of three do not overlap. Here, for instance, the tensor octet of the PP channel 
would be required to decouple from the PV channel and vice versa. Fortunately, 
however, the observed meson spectrum rules out these alternative solutions. 

Similarly the combined duality constraints for unnatural parity trajectories in 
PV-tVP and VV-tVV imply that they too must occur in degenerate sets of four 
comprising octets and singlets of positive and negative signature. This result holds 
separately for natural C parity (C = (+ l)J) and unnatural C parity (C = ( -  1 ) J )  
mesons. Consequently the nonet of pseudoscalar trajectories ( x ,  K, 7 ,  7’) are 
required to be exchange degenerate with a nonet of axial vector trajectories with 
negative C parity. The  B(1235), H(990) and Q(1320), which would roughly overlap 
with the pseudoscalar nonet trajectories on a Cheu-Frautschi plot, are usually 
identified as members of this axial vector nonet. Finally the observed axial vector 
mesons with unnatural C parity (eg A,(1070) and D(1285)) should also form a 
nonet, and be degenerate with a nonet of positive signature trajectories (presumably 
axial tensors) to complete a duality set. However, the identification of this last 

1. 
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duality set with the observed meson spectrum is still very incomplete. Note that 
the strange mesons of the opposite C parity are expected to mix. 

Thus in a SU(3) symmetric world duality requires the meson SU(3) multiplets 
to occur in degenerate super multiplets, consisting of octets and singlets of both 
signatures and with mutually related residues. The  observed meson spectrum for 
both natural and unnatural parity seems to agree reasonably with this super multiplet 
structure, in the sense that the trajectory split between the four multiplets is no 
larger than that within a given SU(3) multiplet. Similarly the residues seem to 
conform to the duality relations. 

4.1.3. SU(3) breaking solution. I t  is appropriate to ask at this point if there is 
an exact solution to duality, consistent with an appreciable SU(3) breaking in the 
trajectory functions, as seems to be the case in the real world. The  answer is yes 
and the solution corresponds exactly to the one described in the last section by 
equations (3.11), (3.12) and (3.9). Assuming Gell-Mann-Okubo mass formula for 
a broken octet, one can estimate the I = 0 mass in terms of the masses of the I = 1 
and I = 4 members. In  particular if the I = 4 mass (eg K”) is appreciably higher 
than the I = 1 mass (eg p), then the resulting I = 0 mass should be still higher. I n  
this situation duality has a unique solution which requires an SU(3) singlet with a 
fixed mass and coupling strength and a fixed angle of mixing with the I = 0 member 
of the octet. The  required mixing angle is tan 0 = (J2)-l, and the singlet mass 
and coupling are such that, after mixing, one of the I = 0 masses overlaps with the 
I = 1 mass and the other I = 0 member decouples from channels like TT and xp .  
( In  addition, of course, pairwise exchange degeneracy between the positive and 
negative signature trajectories as in equation (3.1 1) and the corresponding residues 
must hold.) We have seen in the last section that all the three above conditions 
are satisfied by the vector and the tensor nonets. The  same is not true, however, 
for the pseudoscalar and axial vector nonets. For instance the mixing angle between 
7 and q’, as determined by the Gell-Mann-Okubo mass formula, seems to be 
roughly equal to zero, and both these masses are substantially higher than the 
I = 1 mass (ie T ) .  It is fair to summarize, therefore, that the duality solution is 
satisfied more or less exactly for the physical vector and tensor trajectories, whereas 
for the unnatural parity trajectories they are broken at roughly the same level as 
SU(3). (See eg Logan and Roy 1971.) 

4.2. Meson-baryon scattering 

broadly into three categories : 
The  duality and exoticity constraints in s channel meson-baryon scattering fall 

( a )  constraints on meson trajectories ( t  channel) from exoticity in the meson- 

( b )  constraints on baryon trajectories (U channel) from exoticity in the meson- 

( c )  constraints on baryon trajectories (U channel) from exoticity in the annihi- 

( a )  Meson multiplets f r o m  baryon exoticity. Consider first the pseudoscalar 
octet-baryon octet scattering PB --f PB. The  meson super multiplet structure and 
their couplings to the meson vertex have been completely determined from PP 
scattering (except for an overall normalization). Thus we have six parameters 
characterizing their couplings to the baryon vertex-s,, dT,fT for singlet, symmetric 

baryon (s and U )  channels; 

baryon ( s )  channel; 

lation ( t )  channel. 
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octet and antisymmetric octet couplings of the tensor nonet and similarly sv, d,, fr 
for the vector nonet. The  exoticity in the meson-baryon SU(3) states 10 and 27 
(see equation (4.2)) gives two constraints on these six independent couplings. They 
are (see Mandula et a1 1970) 

ST = dT I 3fT (4.3) 
dT--fT = i (dv-f,) (4.4) 

where the sign ambiguity reflects the fact that the meson vertices occur linearly in 
PB -+ PB, whereas they are known only in quadratic form from PP -+ PP. Applying 
a similar exoticity condition to PB+VB gives relations identical to (4.3) and (4.4) 
except that the vector and tensor indices are interchanged. Altogether in view 
of the symmetry of (4.4) one has three constraints amongst the six couplings. 

The  duality result on the non-pomeron pp total cross section, 

o,,(non-diffractive) = 0 (4.5) 
is often used as a fourth constraint, which is equivalent to 

The  entire vector and tensor nonets are then described by only two independent 
couplings, which are the d and f .  Consequently one has many interesting predictions, 

For instance all baryon-baryon cross sections are predicted to be flat, ie 

aBB(non-diffractive) = 0 (4.7) 
and many meson-baryon cross sections are mutually related as shown in table 1. 

Table 1. Non-diffractive meson-baryon cross sections 

Channel cross section 
Relative 

K+ p 0 
K+ n 0 
=- P 2f 
T+ p f - d  
K- P 2 f  
K- n f - d  

(b )  Baryon multiplets from baryon exoticity. I n  this case duality and exoticity 
constraints do not determine the baryon trajectory spectrum completely. Consider 
first octet-octet (PB -+ PB) scattering. There could be a priori six degenerate SU(3) 
multiplets-singlets, octets and decuplets of positive and negative signature. Taking 
into account the symmetric and antisymmetric octet couplings one has eight 
independent coupling parameters, f,, di, f5 and t,. There are only two constraints 
coming from the baryon exoticity in the s channel representation 10 and 27 (see 
equation (4.2)). In  order to complete the picture we also consider meson octet and 
baryon decuplet scattering 

We see from (4.2) and (4.8) that PB-tPA gives one constraint, corresponding to 
the exotic channel 27. There are two exotic channels 27 and 35 in PA-tPA. 
However, the crossing matrix for this process is such that the two degeneracy 
constraints are the same, so altogether one has four constraints and twelve couplings 
-E, and T, corresponding to octet and decuplet couplings to the P A  channel in 
addition to the eight couplings above for the PB, as shown in figure 16. 

8 ( ~ ) 1 0  = 8(+)10(+)27(+)35 .  (4.8) 
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Thus one has a grossly under-determined system. But the constraints give 
some very interesting results when we supplement them with our experimental 
knowledge on the baryon spectra. The  latter suggests for instance that the giant 
degeneracy structure involving all the six multiplets is not realized in nature, at 
least for the prominent trajectories. 
solutions to the four duality constraints involving a subset of these six. 

Therefore, one should look for minimal 

P 
\ 
\ 
\ 

Figure 16. Baryon trajectory coupling to the pseudoscalar and baryon octet (PB) and pseudo- 

Solutions involving four or fewer degenerate trajectories are quoted below 

scalar and baryon decuplet (PA) channels. 

from Mandula et aZ(l970) : 

(i) 8010 (vi) 801 ( + ) 8 ( + ) 10 
(ii) 808 (vii) 1 (+)  808 (+) 10 

(iii) 808(+)10 (viii) 1 ( + ) 8 0 1 ( + ) 8  (4.9) 

(v) 8-8(+)1 

(iv) 1008(+)10 (ix) 8(+)1008(+)10 

where the multiplets on the opposite ends of the arrow have opposite signatures. 
I t  is easy to see, for instance, that a solution like 1Oe10 is ruled out as it involves 
only four terms (t&, T+) which get over-determined by the four homogeneous 
constraints. 

The  baryon spectrum strongly suggests that there is no other multiplet near the 
nucleon mass with the same spin-parity (8') and similarly there is no other $+ 
multiplet near the A(1238). Therefore the nucleon, the leading natural parity 
baryon, should be associated with solutions (i), (ii), (iii), (v) or (vi), and the leading 
unnatural parity baryon, A(1238), should be associated with solutions (i) or (iv). 
The  most favoured solution for nucleon is the solution (vi). The  #- members of 
this super multiplet are usually associated with the N,(1520) octet and a somewhat 
heavier decuplet A(1670). The  favoured solution for A(1238) is solution (i), the 
positive signature octet being associated with the #- N(1670) resonance. It should 
be remarked, however, that there is substantial breaking of exchange degeneracy 
amongst the above trajectories, in particular between the nucleon and A(1670) 
trajectories, which are separated by roughly one unit. 

The  relative couplings of the solution (i) to t-, T-, d+, f +  and E+ are exactly 
determined by the four homogeneous constraints. I n  particular the f / d  ratio for 
the 4- octet is predicted to be - $  which is close to the experimental value of 
about -+. The  solution (vi) on the other hand involves nine terms, d,, f* ,  E+, 
s-, t- and T-, which are left under-determined by the four constraints. Nevertheless, 
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some interesting relations emerge. For instance, assuming the 8- decuplet branching 
ratio to PB to be small relative to PA (ie t-< T )  on the basis of data leads to an 
fld ratio of about unity for both the nucleon and the 8 octets. These again are 
close to the experimental values of 0.6-1 for the nucleon and about 1.2 for N,(1520). 

Finally one should note that the above solutions for the leading natural and 
unnatural parity baryons form a very simple pattern in terms of SU(6). One has 
the exchange degeneracy condition between 

8(++)-31($-)( +)8($-)( +) lo($-) (4.10) 
10(4+)+8( $-) (4.11) 

which is simply an exchange degeneracy between the SU(6) representation 56 (with 
orbital angular momentum L = 0) on the left and the 70 (with 1, = 1) on the right. 
The  degeneracy holds separately for the spin doublet (4.10) and spin quartet (4.11) 
members of these multiplets. 

( c )  Baryon multiplets fyom meson exoticity. One can get additional degeneracy 
constraints on the U channel baryon trajectories by considering exoticity in the 
annihilation (t) channel. Now the annihilation channel BB+PP gives two con- 
straints, from the exotic states ( l o +  m) and 27; B 6 + P P  gives two constraints, 
from the exotic states To' and 27 and A d  + PP gives one constraint, from the exotic 
state 27. Thus with s and t channel exoticity conditions there are nine duality 
constraints altogether. These are still not enough to solve for the non-exotic baryon 
spectrum exactly, since there could in general be six degenerate trajectories with 
twelve independent couplings. However, they are enough to kill all the physically 
reasonable subsets of this super multiplet discussed above. In  particular they 
require every decuplet to be accompanied by an octet of the same signature, 
which does not seem to be the case for A($+). Anyhow the most reasonable (or 
rather the least unreasonable) solution for the A(#+) in this case is 10 ( + ) 8-38 ( + ) I ,  
and for the nucleon trajectory it is 8 4  ( + ) 10 or 8 0 8  (+ ) 1. The  relative residues 
in each of these two solutions are also determined. For the first solution, for 
instance, one has either f+/d+ = fJd- = - $  or f +  = d- = 0, which are in complete 
disagreement with the experimental values giving (f/d), about + 1. In  the second 
solution thef/d ratios are + 1, but the octets, including the nucleon, decouple from 
PA, which is experimentally unacceptable. 

4.3. Baryon-antibaryon scattering 
I n  s-channel BB -+ BB there are two independent exotic states, (10 + m) and 27. 

We have seen earlier that the t channel meson trajectories occur in pairs of exchange 
degenerate nonets. Moreover, their couplings to the BB channels are fixed from 
MM, MB and BB scatterings and from factorization within two independent 
parameters, namely the magnitude and the f / d  ratio of the octet coupling. Thus 
we have two homogeneous equations to solve for these two coupling parameters 
which makes it an over-determined system. In  other words, for no value of this 
f l d  ratio can both the (1O+n) and 27 channels be free from resonances. For a 
reasonable f/d ratio (eg pure f type coupling for the spin non-flip amplitude) one 
sees that there must be exotic resonances in both ( lo+  m) and 27 BE channels. 
Finally these exotic resonances also satisfy the duality constraints for BA and A d  
scattering, ie one does not need more resonances in the 35 or 64 multiplets of 
SU(3) (Rosner 1968). 
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It should be remarked, however, that duality constraints on the scattering of the 
above exotic resonances with ordinary mesons and baryons lead to still more 
exotic resonances-ie those belonging to 35, 64 and still higher multiplets of SU(3). 
I n  fact a consistent solution to duality requires a divergent set of more and more 
exotic resonances for both mesons and baryons (Roy and Suzuki 1969). Such 
resonances, if present, are of course expected to decouple from the ordinary meson- 
meson and meson-baryon channels for consistency with our earlier duality solutions, 
and what is more important, for consistency with data. 

4.4. Concluding remarks 
I n  summary, the duality and exoticity conditions for meson-meson scattering 

provide an exact solution to the degeneracy pattern of exchanged mesons. For 
meson-baryon scattering these conditions are not sufficient to solve for the 
exchanged baryon spectrum uniquely, whilst for the baryon-antibaryon scattering 
the exchanged meson system is over-determined by these constraints. Thus one 
has either to abandon the duality hypothesis for baryon-antibaryon scattering 
(ie assume that the t channel Regge terms are built significantly by the non-resonant 
contributions in the s channel) or else to assume the existence of exotic resonances 
with significant coupling to the baryon-antibaryon channels. I n  either case one 
expects the baryon-antibaryon total cross sections to show significant energy 
dependence, even for exotic channels. Experimental search for resonance structures 
in these channels has so far given negative results. It is fair to say, however, that 
the data are too scanty to rule out the existence of exotic mesons. Moreover such 
resonances, as one looks for them above the BB threshold ( > 2 GeV), are expected 
to be broad. This is because of the many mesonic channels open, although their 
coupling to each single channel is required to be small. Thus a phenomeno- 
logical distinction between the resonance and the background contributions-and 
hence between the two alternatives mentioned above-is likely to be very 
ambiguous. 

4.4.1. Systematics of duality breaking. Assuming the exotic mesons to be absent, at 
least in the low mass range (<  2 GeV), one sees a nice systematics in the duality 
breaking. For PP scattering, the exchange degeneracy prediction (between the 
vector and tensor nonets) agrees with data not only in the particle classification 
but in their precise trajectory positions as well. For PV and VV scattering, the 
degeneracy prediction (between the pseudoscalar and axial vector nonets) agrees 
with the observed particle spectrum but not with their precise trajectory positions. 
The  same is true for meson-baryon scattering, with the exchange degeneracy 
prediction of equations (4.10) and (4.1 1). For the baryon-antibaryon channels, 
however, the predictions do not even agree with the known particle spectrum. 
For the annihilation channels the degeneracy pattern involves a $+ octet trajectory 
and for BB-tBB it involves exotic meson trajectories, neither of which has been 
observed. These trajectories if present, must be very far below the other members 
of the super multiplet. 

The  above systematics of duality breaking have been closely analysed by 
Mandula et a1 (1969b), who have linked it with the increasing thresholds for the 
above three classes of reactions. Though far from being a rigorous solution to 
the problem, this reasoning may nonetheless provide a physical insight into the 

46 
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mechanism of duality breaking. I t  essentially goes as follows: 
(i) Semilocal duality assumes an overlap region between the direct channel 

resonances and cross-channel Regge terms. 
(ii) Saturation by non-exotic resonances in the direct channel is seen to hold 

experimentally in the low energy range. However, it is very plausible that it may 
gradually deteriorate as we go to high energies (>2-3 GeV, say) either due to 
non-resonant contributions from annihilation channels or due to the presence of 
high mass exotic resonances. Then duality results will be more exact in those 
cases where Regge behaviour sets in at lower energies. 

(iii) Regge behaviour is expected to set in at lower energies for processes with 
lower thresholds. For instance, for TT scattering it may set in at about 0.5-1 GeV. 
But it can set in only by 1.5-2 GeV for p p  or n-N scattering and only by 2.5-3 GeV 
for NN scattering. It is then plausible that the duality results become less and less 
reliable as we go from PP to VV or PB and then to BB channels. 

5. Duality diagrams 
All the significant results of factorization, SU(3), exoticity and semilocal duality, 

described earlier, can be elegantly summarized in a simple diagrammatic representa- 
tion-the so-called quark duality diagrams. The  technique was first suggested by 
Harari (1969a) and Rosner (1969) and in subsequent years it has played a very 
useful role, both in the phenomenological applications of duality and also in the 
context of formal dual amplitudes, to be discussed later. 

We shall first describe the rules of constructing and interpreting the duality 
diagrams and then discuss some of the immediate results that follow from these 
rules, and finally we shall outline how the rules can be derived starting from 
factorization, SU(3), exoticity and duality. 

5.1. Rules of duality diagrams 
5.1.1. Quai*k contents of hadrons. Each particle is expressed in terms of its quark 
content. Thus for the s channel scattering ab+cd, each of the four particle lines 
(see figure 2) would correspond to two quark-antiquark lines for a meson or to three 
quark lines for a baryon. It is worth listing the quark contents of the important 
mesons and baryons in terms of the standard quark triplet p, n and A. They are 

T+, p+, A$ = pii 
T-, p-, A; = nP 

P = PPn 
n = pnn 

A = pnh 

x+ = pph 

Eo = pnh 

2- = nnh 
9 0  = phh 

9- = nhh 



Duality 1069 

For our purpose the quarks could be purely mathematical objects as we shall be 
concerned only with their internal quantum numbers, and with none of their 
dynamical properties. The  only dynamical feature assumed above is the ideal 
mixing for w - and f-f', which, however, follows independently from duality. 

5.1.2. Planar and nonplanar quark diagrams. Write down all the connected quark 
diagrams that are possible for ab-tcd.  For the simplest case of meson-meson 
scattering connectedness requires that the two qq lines of a,  must join two of the 
other three mesons, ie they should not both join on to the quark lines of a single 
meson. Thus there are three possible diagrams, representing a connected to bc, 
cd and bd, which are shown in figures 17(a), (b)  and ( c )  respectively. Figure 17(a) 
is called a planar diagram, while figures 17(b) and (c) are called non-planar diagrams, 

( U )  ( b )  ( C )  

channels, 
Figure 17. Duality diagrams for meson-meson scattering planar in (a) s - t ;  (6) t - U ;  (c)  s-U 

which reflects the fact that the latter cannot be drawn on a plane without inter- 
secting quark lines. I t  is clear from this figure that (b )  and (c) correspond to planar 
diagrams between t - u and s - U channels respectively. The  connected diagrams for 
meson-baryon scattering follow an identical pattern, as we see from figures 18(a), 
(b)  and (c). For baryon-antibaryon scattering the only connected diagrams are 
the ones planar in s-t. There are two such diagrams, shown in figures 19(a) and (6).  

( U )  ( 6 )  ( C )  

channels. 
Figure 18. Duality diagrams for meson-baryon scattering planar in (a)  s - t ;  (b)  t -u;  ( c )  s-U 

5.1.3. Planar diagram and duality. Now the rule can be stated as follows. T h e  
scattering amplitude is a sum of all connected diagrams, where each diagram rep- 
resents a contribution, dual between the two channels in which it has a planar form. 
Thus for the s channel scattering, ab-tcd;  the s-t planar diagram (eg figures 17(a), 
18 (a ) )  represents a contribution, dual between s channel resonances and t channel 
Regge poles; and the s-U planar diagram (eg figures 17(c), 18(c)) represents a 
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contribution, dual between the s channel resonances and U channel Regge poles. 
In  the usual average sense of semilocal duality, therefore, Im  A, is described by the 
s-t planar diagram alone for large s and fixed t (high energy forward scattering) and 
by the s-u planar diagram alone for large s and fixed U (high energy backward 
scattering). The  u-t planar diagram (eg figures 17(b), 18(b ) )  does not contribute 
to Im A,, but dominates Im A for u channel forward scattering. 

G 4 U b 
( a )  ( 6 )  

Figure 19. For baryon-antibaryon scattering, the only diagrams possible are those planar in s-t .  
They correspond to (a)  normal resonances in the s channel dual to exotic exchanges in t 
and (b)  exotic resonances in the s channel dual to normal exchanges in t .  

One has, of course, no prescription of estimating such diagrams, unlike Feynman 
graphs. The  predictive power of the rule lies in considering such reactions, where 
some of these types of diagrams cannot be drawn. The  average I m  A for such cases 
is then predicted to vanish in an appropriate range of s, t and U .  

5.2. Applications 
5.2.1. Standard EXD yelations. For the s channel reactions K+K++K+Kf and 
K + p + K + p ,  one easily sees from equation (5.1) that the only connected quark 
diagrams possible are those of figures 17(b) and 18(b)  respectively. The  absence of 
the planar s-t (ie figures 17(a), 18(a)) and s-U (ie figures 17(c), 1 8 ( c ) )  diagrams 
implies the non-diffractive ImA, to vanish at high energy, for both forward and 
backward scattering. These are, of course, the standard results of exchange 
degeneracy, discussed earlier. It is, in fact, pretty straightforward to derive the 
general exchange degeneracy result from the duality diagrams. Exotic s channels 
for meson-meson scattering correspond to 10, 10 or higher SU(3) representations. 
These cannot be built from q?j triplets, as 

3 ( ~ ) 3 =  1 (+)8 .  ( 5 4  
They would require at least four quark (9499) lines. Of the three diagrams of 

figure 17, therefore, only the planar t-u diagram (b )  can be present. This implies, 
in turn, vanishing Im A, as large s for both fixed t (ie exchange degeneracy in the 
t channel) and fixed u (ie exchange degeneracy in the u channel). Similarly for 
exotic meson-baryon channels (ie five quark lines) and all baryon-baryon channels 
only the planar u-t diagram is present, which gives the standard EXD results. 

EXD, SU(3) and factorization also give the equalities 

( 5 . 3 )  Non-Diffractive = oNon-Diffractive 
on - y ( i7 -p ) K-p(K-n) 

as we saw in the last section. They follow simply from the duality diagrams; for 
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example, figure 20. The  only difference between the T-p and K-p  case is in the 
n and A quarks, neither of which can, however, annihilate with the baryon quark. 
lines. 

A P  P P "  n P  P P n  

cr-1 ( P )  (K-1 ( P )  
Figure 20. The s-t  planar diagrams for elastic T -  p and K- p scattering. 

5.2.2. Additional EXD relations. Duality diagrams sometimes suggest exchange 
degeneracy between the t channel Regge terms although the s channel may not be 
exotic. The  same results, of course, would follow from standard duality and 
exoticity criteria as well, when one supplements them by factorization and SU(3) 
considerations. The  duality diagrams, however, provide a simple and more 
transparent method of derivation. 

Figure 21. The only diagrams possible for K-p  +T-C+ are the ones planar in (a) t-u and 
(b) s-U channels. 

The  most widely studied examples of this kind are K - p + n - B -  and 
K-n+n-A,n-Co. Only two of the three connected diagrams of figure 18 can be 
drawn for these processes. These are shown in figure 21 for the s channel scattering 
K-p+n-C+. The  absence of the s-t planar diagram requires ImA, to vanish for 
large s and fixed t-ie the high energy resonances should mutually cancel in the 
forward direction but add up in the backward direction. Alternatively one could 
apply duality to the exotic channels K-T-+T-K- and p P + X + p ,  leading to 
exchange degeneracy between the K* and K** exchanges in each case. Then factor- 
ization would imply exchange degeneracy between these two terms in K- p +T- E+, 
where the relative sign of the two residues is fixed by that of the p-A, terms in 
K+n+KOp using SU(3). Thus one gets ImA, = 0. 
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Experimentally it is not known for certain if exchange degeneracy is broken 
more strongly for these reactions, compared to the genuine exotic channels like K+ p. 
But there are some marginal evidences, suggestive of such a breaking. 

(a)  There is substantial breaking of the 'line reversal symmetry' (see equation 
(2.10)) between the s and U channel reactions K-p+n-E- and n+p+K+C". 
However, this seems to be consistent with ImA, = 0 in some Regge models. 

(6)  There is evidence for significant polarization in the s channel reaction. The  
polarization test, however, may not be a reliable measure of Im A,, as a relatively 
small imaginary part (accounting for only 50,; of the doldt, say) may often give rise 
to a 257, polarization. 

( e )  The resonance contributions to forward K-p+n-C+ have been shown not 
to cancel mutually, in the sense of semilocal duality; but this has been done only for 
rather low energy resonances and a very small range of energy. 

These questions are receiving substantial experimental and phenomenological 
attention at present, and one hopes to be able to get a clear picture soon. 

5.2.3. Exotic resonances in bayyon-antibaryon channels. The exoticity requirement 
for baryon-antibaryon channels, discussed earlier, can be seen very clearly from 
the duality diagrams of figure 19. They show that the baryon--antibaryon ampli- 
tude consists of two parts-one corresponding to normal (99) resonances in the 
s channel, which is dual to exotic (qqqq) Regge exchanges in t (figure 19(a)), and 
the other corresponding to normal Regge poles in the t channel, which is dual to 
s channel exotic resonances (figure 19(b)) .  If the high energy non-diffractive cross 
section is dominated by normal Regge exchanges (as the opp data seem to suggest), 
then it means that the dominant high energy resonances in the BB channel must 
be the exotic ones. In  any case it shows that for baryon-antibaryon scattering one 
should not try to generate the normal t channel Regge poles from the normal s 
channel resonances in a FESR sense, contrary to some earlier expectations. 

5.2.4. Decoupling of 4. One easily sees from quark assignment of (5.1) that there 
is no connected diagram for n-p+$n. The  same is true for n+p-+$A++. Thus 
the high energy cross sections for these reactions are required to vanish, which 
seems to be supported by data. 

5.2.5. Constraint on SU(3) byeaking. Duality considerations, supplemented by 
the observed degeneracy breaking in trajectory functions O I ~ , ~  > implies a very 
significant breaking of SU(3) in coupling strengths. For instance the only s-t planar 
diagrams for s channel n-p and K+C scatterings are those of figure 22. Thus the 
non-diffractive KT E+ cross section (involving only 4 , f '  exchange) is predicted to 
fall rapidly with energy, compared to n+ p (involving only p , f  exchange). However, 
the s channel in each case is built out of the same set of resonances-the A+-s. 
Thus the branching ratio A++(M)-+ K+C+f/A+"(M) +n+ p is predicted to go down 
rapidly with the increasing mass of the A++ multiplets, implying a mass-dependent 
breaking of SU(3) (Logan and Roy 1970). It is very likely, however, that the 
physical world corresponds to a significant breaking of duality rather than to a 
strongly mass-dependent breaking of an internal symmetry scheme like SU(3). 

5.2.6. Planarity hypothesis. On a more formal side, the duality diagrams have 
played a significant role in the context of dual models. In  particular figures 17 
and 18 suggest that each duality diagram has poles only in the two channels in which 
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it is planar. For instance figures 17(b) and 18(b) have no poles in the s channel, 
in which they have exotic quark content of q q q s  and qqqqs respectively. Thus for 
a reaction involving resonant poles in all the three channels the duality diagram 
rules require the amplitude to be a sum of three parts, each containing poles only 
in two channels. This assumption is referred to as the planarity hypothesis and it 
plays a crucial role in the construction of the Veneziano model and its multiparticle 
generalizations. 

n+ P K+ 

Figure 22. The s- t  planar diagrams for elastic (a) 7r+ p and (b)  K- E+ scatterings. They 
correspond to the same set of s channel resonances (A++) but to different t channel 
exchanges-p, f for (a) and q5, f’ for (b).  

5.3. Deriuation 
Finally we shall outline how the duality diagram rules can be derived on the 

basis of duality, SU(3) and factorization (Rosner 1969). We shall restrict ourselves 
to the simplest example, that of meson-meson scattering. First we write the s 
channel scattering amplitude in terms of the t channel Regge poles. It is convenient 
for this purpose to describe all the four particles as incoming ie the reaction ab -+ a. 
We then have 

where g’s are the factorized Regge residues. The  summation is over all the vector 
poles V with negative signature and the tensor poles T with positive signature. 

Label the p, n and h components of the quark triplet by indices 1, 2 and 3 
respectively. Now the nonet of vector (and tensor) mesons with ideal mixing, as 
suggested by duality, constitutes a tensor in the quark space. We have, following 
(5 .1) ,  

and an identical expression for Ti. Here (ij) refer to the two constituent quark 
vectors. T o  be consistent with duality we shall assume ideal nonet structure for 
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any meson multiplet M .  Thus the pseudoscalar mesons can be expressed in a 
tensor form, identical to (5.5). Moreover, following duality, we shall assume the 
decoupling requirement for the pseudoscalar (eg y ' + r A 2 ) ,  in addition to those for 
the vector and tensor mesons.? 

Then the SU(3) symmetric couplings for the M M V  and M M T  nonets are 
given by 

gMcViWa = YV Tr ( v [ M c ,  

g M c T M ,  = YT Tr {T LMc, 
(5.6) 

where the subscripts - and + denote commutator and anticommutator brackets. 
The  gMcF,,a and g,n,FLw, can be obtained from the above expressions too, since zj and Kj are simply Tji and qi. 
Writing the above traces in terms of the quark indices, 

g*w,vi7rla = rv{(ij>v ( j 4 c  ( W U  - (ijb (-6 ) U  (k i ) c }  
(5.7) 

g M , T M ,  = Y!f'{($)T ( j k ) c  (ki)a+ ($1,  ( j k ) a  ( k i ) c }  
we see that it consists entirely of connected quark vertices. The  disconnected 
vertices like T r  { V }  T r  {fWc Mu) and T r  { T }  T r  { M c  Ma} are forbidden by charge 
conjugation and by the f -+m decoupling requirement respectively. Substituting 
(5.7) in the amplitude (5.4) then leads to connected quark diagrams only. 

Finally we use exchange degeneracy for the residue function 

YV = YT (5.8) 
and the corresponding relation (3.11) for the trajectories. 

(5.4) and using the exchange degeneracy relations we get 
Now substituting gil!IcVLWa, g/?lcTM,, giMdFMb and gLWdTMb from equation (5*7) in 

Aah+,z = y2& { [ ( j h ) c  f (jk)a ( k i ) ~ l  [(ii)d ( @ ) b  + (iz)b ( @ ) d l  ( l  + exp ( - i7i.aij) ) 

[ ( i l ) d  ( @ ) h  - @')b ( @ ) d l  ( l  - exp ( - irrolij))} + [ ( j ' ) c  (ki)a - ( j ' )u  

(5.9) 
where has been annihilated with its antiparticle Rearranging the real 
and complex parts we get 

S" ij 
Aab+ca  = 2Y2 - [(j',c ( W a  ( 4 d  ( 4 ) b  + ( W C  ( i 4 b  ( @ ) d l  sin nail 

S" ij 
+2y2--- sin mi? exp ( - in%?) [(A ( 4 2  ( i 0 b  ( @ I d  + (.+>a (4, ( i 4 d  ( I j ) b l *  (5.10) 

Following the quark lines of the above expression for A, one immediately sees 
that the first term corresponds to the nonplanar diagram of figure 17(b), and the 
second term to the planar diagram of figure 17(a). Thus for high energy forward 
scattering Im A, gets contribution from the planar diagram alone. The  nonplanar 
diagram is purely real here. The  real and the complex terms exchange their roles 

t The fact that the real pseudoscalar mesons do not conform to ideal nonet structure and to 
the decoupling requirement assumed here would spoil the coupling relation of (5.6) for vertices 
involving 7 or 7'.  The vertices involving only d s  and K's would, however, still obey (5.6). 



Duality 1075 

for negative s (ie U channel) so that Im A, gets contribution from the nonplanar 
diagram of figure 17(b). This completes the derivation of the duality diagram rules. 
Incidentally the third diagram (figure 17(c)) does not contribute to forward 
(fixed t )  scattering for either large s or large U .  Hence it does not appear in this 
derivation. The  derivation for meson-baryon or baryon-baryon scattering is in 
essence similar, but is more complicated algebraically. These are contained in 
the original paper of Rosner (1969). 

5.4. Concluding remarks 
I n  conclusion we wish to stress two points. Since the duality diagram rules can 

be formally derived from duality, exoticity, SU(3) and factorization, all its pre- 
dictions can alternatively be obtained, and some of them had first been obtained, 
from these latter hypotheses. However, these hypotheses, while sufficient to derive 
duality diagrams, may not all be necessary. Thus it has often been hoped that 
the duality diagram predictions may be better satisfied in nature than the above 
set of hypotheses (Harari 1969a). 

6. Dual models 
6.1. The Venexiano model 

T o  construct an explicit dual model seems a formidable task. For one thing, 
direct channel resonance terms are polynomials in t ,  whereas crossed channel 
Regge pole terms are transcendental functions of t ,  so we need an infinite number 
of the former to match the latter exactly. I t  was therefore a major breakthrough 
when Veneziano (1968) realized that simple dual model amplitudes could be 
constructed quite easily. 

The  Veneziano model was first formulated for the reaction n n + n w .  Here 
the s, t and U channels are the same and the T matrix is fully described by a single 
invariant amplitude A(s, t ,  U) : 

T = EhpvuPlhPBpPSv euA(s9 t ,  U> (6.1) 
where p ,  (i = 1,2,3) are the pion momenta and e is the w polarization vector. 
Parity conservation allows only w helicities -t 1 to be produced, so this is an 
intrinsically spin-flip process ; hence the contributions of s channel resonances and 
t channel Regge poles to A behave like P;(cos e,) and y( t )  s ~ ( ~ ) - ~ ,  respectively. 

The  p Regge pole is the leading singularity in each channel. We therefore want 
p and its recurrences (with Jp = 1-, 3-, 5-, ...) to appear as low energy resonances; 
we also wish the high energy behaviour at fixed t to be 

A N [l - exp ( - inol(t))] s5(t)-1 

where a(t)  is the p trajectory. 
After taking part in the construction of some approximately dual amplitudes 

(Ademollo et a1 1967, Rubinstein et a1 1968), Veneziano noticed that the following 
simple expression has most of the desired properties : 

where /3 is a constant coefficient and,aci denotes the p trajectory in the i channel. 
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This trajectory is assumed linear, ie 
as = a(s) = a. + a‘s 

and similarly for at,a,. The amplitude (6.2) is clearly analytic and crossing- 
symmetric; it also has resonance poles and Regge behaviour, and duality between 
the two, as we see below. 

6.1.1. Resonances. The  gamma function r (x )  has simple poles at x = 0 and at 
negative integers; the residue at x = - m  is ( -)m/F(l - x). Hence the factors 
F( 1 -a,) in the first and third terms of equation (6.2) give poles where as = 1,2, . . , . 
These are more or less the resonance poles that we want. The  residue of A a t  
each pole is 

1.  (6.4) 
+ r(2- au- N )  (Residue at 01, = A7) = 

Csing the recursion relation P(x )  = (x-  1) r ( x -  l), this reduces to a sum of 
polynomials in t and U and hence to a polynomial in cos Os, of degree N- 1. Making 
a partial wave analysis, into a sum of P;(cosO,) terms, we see that the resonance 
occurs not just in one partial wave, but in all partial waves with odd J < N .  Even 
.T values are forbidden by isospin and Bose statistics for the TT system; in equation 
(6.4) this is enforced through the symmetry between t and U .  

Figure 23. Resonances and trajectories in the rrrr + rrw Veneziano model. 

These resonance states are illustrated in figure 23. In  addition to the p meson 
and its recurrences on the p trajectory, the Veneziano model provides ‘daughter’ 
resonances, lying on trajectories spaced at integer intervals below ap ; they are 
required by the model. 

The  odd daughters (with J = ol-odd integer) are at first sight particularly 
surprising, since their masses are not degenerate with the input p,g, ... etc 
resonances in this TT-+TW case. It was originally proposed to eliminate them by 
a subsidiary condition 

that is easy to satisfy for strictly linear trajectories. However, we should probably 
not try to eliminate them. In  other contexts (eg TT->~TT below) they seem to have 

ag + at + a, = 2 (6 .5 )  
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no less physical significance than the even daughters, and there seems to be no 
prescription for removing them in the general n particle amplitude anyway. 

Notice that all resonance poles lie on the real axis of s, and not displaced below 
it as they should be. This means that the model, as it stands, is not unitary. It 
gives a zero-width idealization of resonances. 

6.1.2. Regge behaviour. Let us see what happens at high energy and fixed t .  
The  Veneziano amplitude (6.2) does not have smooth asymptotic behaviour as 
s-fco along the real axis, because of the successive resonance poles. These poles 
really ought to lie below the axis. We can therefore correct for this unphysical 
feature by taking the high energy limit along a ray above the real axis: s = I S I  eiG, 
where 4 is a small angle and I s I + a. The high energy limit defined by this device 
is smooth. Keeping t fixed the third term in equation (6.2) becomes negligible, 
and the first two reduce to 

A ( ~ ,  t ,  + p q i  - .J [( - a,)~l--l + ( - 4-11 (6.6) 

which is precisely of the required Regge form. In  deriving this we have used the 
relations 

r ( z +  a ) / r ( x  + b) + za-b as I x I + CO, 0 < arg x < T (6.8) 

(6.9) r(x) F(1- x) = n/sin.irx. 

6.1.3. Duality. This is seen in the fact that the alternative s channel resonance 
and t channel Regge pictures are constructed from the same terms; they are 
alternative not additive. 

It can be objected that the Regge formulae (6.6)-(6.7) no longer contain s or U 

channel resonance poles, so that it should be possible in principle to separate 
resonance and Regge poles into additive terms. Where then is duality? The  
answer is that such a separation cannot in fact be made if we use only meromorphic 
functions, which possess poles but no branch points. If we want a duality in which 
particle poles in crossed channels are dual to each other, and not to various branch 
cuts instead, the meromorphic assumption is very natural, at least as a first 
approximation. For fuller discussion, see Oehme (1971). 

Some remarks should now be made. 
(i) The  linearity of trajectories, so that as+a's as s + w ,  is crucial in getting 

(ii) Notice that the Veneziano model automatically gives wrong-signature 

(iii) The  coefficient /3 has to be a constant, independent of s,t,u. 
(iv) Within this general framework, we can add 'satellite terms' of the form 

A' = P'P(K-a,) l?(L-ai)/I'(M-a,-al)+symmetrical terms. (6.10) 

The  first term here has resonance poles for a, = integer N >  K ;  the residue is a 
polynomial in t of degree N +  L - M ,  implying resonance spins J <  N +  L - M +  1. 
The  high energy behaviour is sar+K-M. I n  the present n n - f ~ w  example we want 
leading resonance spins J = as and leading Regge behaviour sat-1, so we must 
restrict the satellite terms (6.10) by imposing M >  L+ 1, M >  K+ 1. 

the Regge pole form above. 

zeros in the Regge amplitude. 
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(v) T h e  r functions in the numerator of a general Veneziano-type term like 
equation (6.10) give poles at as = integer2.K and B~ = integer2 L. These poles 
lie on straight lines in the real (s, t )  plane, and where they intersect we risk getting 
double poles. This would be unphysical; the residue of each pole at given s would 
not be a polynomial in t and hence each pole would represent an infinite set of 
resonances, with unbounded spins J.  Veneziano models avoid double poles through 
the F function in the denominator, which gives lines of zeros at as + at = integers > M .  
These pass through all the intersections of the lines of poles, killing the double 
poles, provided that M < K + L. This gives one more restriction on the parameters 
L,  K,  M .  

(vi) The  trajectory slopes in different channels should be equal, ie 
) I f  I a g = a t = B U = i Y .  

This is trivial in the n-r+n-w case above since the three channels are identical. 
I n  more general cases, however, this is needed so that pairs of contributions such 
as ( - au)at & ( - a,$ will reduce asymptotically to a Regge pole term with signature, 
(B'S)"~ (1 _+ exp ( - ixq)). 

Figure 24. Daughter structure in the n-r + rrr Veneziano model, 

6.2. Various developments 
6.2.1. ~ n -  scattering. Having seen how the Veneziano model works in one reaction, 
we can extend it to others. Consider n-+n--+r+n-- scattering (Lovelace 1968, 
Shapiro 1969). Here the U channel n-+n-++n-Tfn-+ is exotic while the s and t channels 
are identical, so we want a model that involves only s and t channel particles in a 
symmetrical way. We expect the p and f 0 mesons to appear, with their higher spin 
recurrences and presumably some daughter particles also. We also expect p and f O 

(and their daughters too) to be EXD. Since this is a spinless problem, there is only 
one invariant amplitude A : s channel resonances of spin 1 contribute A 2: P,(cos e,) 
and t channel Regge pole exchanges contribute A N sui, We can meet these require- 
ments by taking 

~ ( s , t )  = pr(i-aS)r(i-a~)/r(i-as-Oit). (6.11) 

This has sets of resonances at 01, = N >  1 with spins J <  N ,  and is symmetrical 
between s and t. The pattern of parents and daughters is shown in figure 24. 
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Bose statistics, coupled with the absence of I = 2 exotic states, require us to 
identify J = odd and even resonances with 1 = 1 and 0, respectively. 

T h e  above amplitude A($, t )  is just for n-+~--+n-+n-- scattering, but through 
isospin and crossing symmetry it determines all the TT amplitudes: 

A0 = QA(s, t )  + #A(s, U )  - +A(t, U )  

A1 = A($, t )  - A(s, U )  (6.12) 
A2 = A(t, U )  

where A* refers to s channel isospin I. 
A nice feature is that this model readily includes the Adler zero, deduced from 

PCAC consistency (Adler 1965), at the point s = t = U = mn2 when one of the 
external pions is extrapolated to zero mass. I n  the Veneziano framework, the only 
parameter that can change under this extrapolation is the overall factor p, since 
the trajectories 0 1 ~  do not depend on external masses; hence we expect this zero 
to persist. Fortunately, because of the denominator I?( 1 - as - at), A(s, t )  vanishes 
on the line as+at = 1. Hence there is a zero at the required place provided 
a(mn2) = Q which is quite compatible with experiment. Satellite terms do not 
necessarily have this zero, however. 

Another nice feature is that essentially all the parent and daughter resonance 
poles have positive residues. For elastic scattering, a pole residue is essentially the 
square of a coupling constant. Negative residue poles, sometimes called ‘ghosts’, 
are therefore definitely unphysical. Fortunately this ~ - 7 r  model turns out to be 
ghost-free, with a suitable choice of trajectory (Shapiro 1969). 

A less successful aspect is the prediction of daughter particles. There are 
experimental J =  0 candidates that one may identify with the daughter of p and 
grand-daughter of .f. Also there is some evidence of a J = 1 particle to identify 
with the grand-daughter of g. But there is no sign whatever of the predicted J = 1 
daughter off. (For a recent survey of low energy n-n- scattering, see Morgan 1972.) 
Remember that the prediction of daughter particles is a general feature, not only of 
Veneziano models, but of any attempt to realize local resonance-Regge pole 
duality. 

6.2.2. The pomeron. The pomeron has not been mentioned above. The  Veneziano 
model is about duality between resonances and Regie poles, ignoring P. If the 
latter is regarded as a diffractive effect, a consequence of unitarity, we may expect 
it to appear among the higher order terms of a future complete theory. Meanwhile, 
any pomeron amplitude has to be added empirically. 

6.2.3. Unitarixation. The  Veneziano model with real trajectories is plainly non- 
unitary, since all the resonance poles are on the real energy axes. Sometimes this 
is unimportant; eg in the physical region of K + p  scattering, far from all pole 
positions, it does not matter that the latter are slightly misplaced. However in 
other situations, working near a resonance, we must introduce its finite width 
correctly. Various ways have been tried as discussed below. 

(a)  Introduce I m a .  Giving as a positive imaginary part above threshold (s > so) 
displaces resonance poles below the real s axis, but also destroys the linearity of the 
trajectory below threshold s<s,,, since 01 is an analytic function. This in turn 
destroys the argument that the pole at 01 = N represents a set of particles with 
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spins J<IV and in addition to daughters, we get the undesirable prediction of 
‘ancestors’ with spins J >  N .  There is no evidence for ancestor resonances. A 
remedy for ancestors is to introduce an imaginary part in as only (when working 
in the s channel physical region), keeping at and au real and linear as before. This 
now violates crossing symmetry instead, but has nevertheless sometimes been used 
as a phenomenological expedient (eg Lovelace 1968). 

( 6 )  K- matrix prescription. The  K matrix, formally defined by 
S =  l + i T = ( I + & i K ) / ( l - $ i K )  

is a real symmetric matrix. Since the Veneziano formula is also real, it is appealing 
to identify it with K rather than T.  The operator relation T = K/(  1 - 4iK) then 
automatically converts the real poles of K into complex poles of T. This pre- 
scription is only practicable for elastic scattering, possibly including some coupled 
two-body channels. I t  then satisfies elastic unitarity but violates crossing symmetry. 
It has been used, for instance by Lovelace (1969), to calculate m, n-K and RK 
phase shifts. 

( c )  Smoothing with respect to 01. The poles on the real axis can also be removed 
by averaging with respect to the parameters of a. For example, we can introduce 
a parameter A, such that 

4 
as = a,+a’s+A s -  C m i 2  i i=l 1 (6.13) 

and similarly for a!, au. We can then replace a given Veneziano amplitude V by 

F = [oAodA+( A) Y(  A) (6.14) 

where + ( A )  is a weight function vanishing at both limits A = 0, A,. 
The result of this averaging is to smear the resonance poles on the real axis 

into cuts on the real axis, and also to smear Regge poles into Regge cuts. Martin 
(1969), who suggests this remedy, shows that for suitable weight functions the 
resonance poles have simply been displaced, and can be reached by analytic 
continuation through the cuts; also, he shows that Im  P preserves positivity, ie it 
has positive Legendre projections in the physical region. 

The  weakness of this prescription is that it is arbitrary and has no clear physical 
interpretation. 

( d )  DualJield theory. A much more ambitious approach is to regard Veneziano 
formulae (and their n particle generalizations) simply as analogues of Born approxi- 
mations in Lagrangian field theory-they are not unitary either. Unitarity is 
therefore expected to come from adding higher order terms, iterations of Veneziano 
amplitudes, corresponding to diagrams with closed loops in a field theory. This is 
an extremely arduous programme, which is by no means complete yet. For a 
review of progress see Alessandrini et a1 (1971). 

6.2.4. Annihilation process pn+-r-n--r+. A very imaginative application was proposed 
by Lovelace (1968). If pn annihilation at rest goes via the S states, as suggested 
by experiment, the odd-G parity component must come from the JPG = 0-- state, 
with exactly the quantum numbers of a heavy pion. Hence the fin-tn-r-n-f 
decay amplitude should resemble a n - - ~ + +  T-T+ scattering amplitude (with a 
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different physical region of course), especially since the Veneziano model has no 
explicit dependence on external masses. 

In  fact the T-T+ amplitude of equation (6.11) would not fit the ijn+37r decay 
data. The  latter have the feature that p production is somewhat suppressed; there 
is an enhancement in the Dalitz plot at the p mass, but without the strong angular 
dependence of a pure p signal. Lovelace therefore proposed the alternative form 

(6.15) 

Here s, t ,  u are the invariant mass-squared for the two T+T- pairs, and T-T-,  

respectively. The  numerator I?-functions give T-T resonance poles in the s and t 
channels (U is exotic), and the Veneziano formula combines them into a precise 
dual prescription for overlapping resonance effects. There is no high energy 
Regge region to concern us here. Formula (6.15) gives resonance poles at as = N >  1. 
The  residues are polynomials in t of order N -  1, so the resonances have spins 
J <  N -  1 ; ie the resonances on the leading trajectory a are all missing-which was 
the effect desired. 

Lovelace noted another interesting property of this formula. The  denominator 
r function gives zeros of the amplitude along the straight lines as + at = integer 
N >  2. Hence strong suppression is predicted in the Dalitz plot, in all the spaces 
between the resonance bands, in agreement with experiment. Unfortunately, the 
full story seems to be more complicated. The  p resonance is not completely absent, 
and a detailed fit of the Dalitz plot needs several satellite terms (Altarelli and 
Rubinstein 1969). Nevertheless, this remains a very pretty illustration. 

6.2.5. Baryon poles. An important property of baryon channels is the MacDowell 
symmetry, which relates partial wave amplitudes with the same angular momentum 
but opposite parities by 

f”’(Ju) = -fJ-( -Ju) (6.16) 

where superscripts I: denote TP = & 1. Consequently Regge poles occur in 
opposite parity pairs, with 

.+(JU) = a-( -&) (6.17) 

y+(Ju) = - y-( - Ju). (6.18) 

I n  TN scattering, for example, this symmetry can be seen quite easily. The  
quantities with simple partial wave decompositions in the U channel are not the 
invariant amplitudes A(s, U )  and B(s, U), but rather the combinations E* (see 
Barger and Cline 1968): 

F’*(Ju, s) = T A - (Ju F Af) B (6.19) 

F’”(Ju, s) = [fJ‘ P>+*(z) -f”’ P>-+(z)] (6.20) 
J 

where z = cos e,, in the U channel. Equation (6.19) shows that 

E+(&, s) = - P-( - Ju, s) 

and the subsequent partial wave decompositions then lead to equation (6.16). 
E* are the natural things to Reggeize; each has contributions analogous to 

equations (2.4) and (2.5). Since P;++ dominates over P>+ as z-foo, for high 
energy Regge exchange E +  and F’-  are dominated by TP = + 1 and - 1 exchanges, 
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respectively. The  natural candidates for Veneziano representations, however, are 
the invariant amplitudes A and B. These then define the Regge trajectories a& 
appearing in p*, and the Veneziano coefficients define the residues y*, through 
equation (6.19). 

An essential part of the Veneziano formula is that trajectories are linear, 
au = a. + a'u, with no explicit ,/U dependence. This immediately gives a+ = a- = au, 
and predicts that particle poles generally occur in degenerate parity doublets, 
contrary to experiment. This is a serious difficulty. A partial solution is to introduce 
sums of Veneziano terms and adjust their coefficients so as to cancel some of the 
unwanted parity partners. The  point is that ,/U dependence enters the residues 
y* through equation (6.19)) so by adjusting A and B we can make yf or y- vanish 
at a finite number of Ju values (see Inami 1971, Berger and Fox 1971). 

An alternative approach is to postulate a fixed cut in the J plane, removing one 
of the two trajectories a* to an unphysical sheet (Carlitz and Kislinger 1970). Then 
the problem of constructing a dual model still remains (Bardakci and Halpern 
1970). 

\ / \  \ v 
\ \ \  
\ ' \I 

\ /  \ \ \  
\ \  

s channel 
poles 

s.0 

Figure 25. Pattern of poles and zeros in an (s, t )  Veneziano term. Solid circles mark pole-pole 
intersections. 

6.2.6. Lines of zeyos. I n  any single Veneziano term 

(6.21) 

the denominator r function gives zeros on the lines a,+ ai = integer > M that have 
important physical consequences. I n  general, the existence of resonance poles at 
fixed s and fixed t implies that a curve of zeros must pass through each pole-pole 
intersection to prevent double poles (see discussion in 56.1). But the Veneziano 
form implies in addition that 

(i) these zeros remain on the real s, t plane; 
(ii) they lie on straight lines; 

(iii) these lines are a,+ at = constant (equivalently, U = constant). 
These real linear zeros can pass through physical scattering regions and be 

directly observed. We have already met one example in the pn-t 3~ case above. 
Another interesting illustration is K- p -+ Ko n, with exotic U channel (Odorico 

1971). If it is described by a single Veneziano amplitude like (6.21) we predict 
dips at fixed U, with a spacing of about 1 (GeV/c)2, appearing in both the s channel 
and t channel physical regions (see figure 25). I n  normal Regge theory we might 



Duality 1083 

expect fixed U dips to occur in connection with a U channel exchange; here, on the 
contrary, U channel exchange is forbidden and the dips come from the interplay 
of s channel and t channel poles instead. Theoretically, the intersection of the 
t channel poles p,u,f ,Az with the s channel poles A(lllS), A(1520), A(l8lS) 
indicates lines of zeros at U = 0.4, - 0.6, - 1.6 etc. Experimentally, fixed U dips 
are found at U = - 0.1, - 0.7, - 1.7. Allowing for some displacement due to C 
resonances, this is a remarkable agreement. 

When several different Veneziano terms are added, these zeros do not necessarily 
survive: unlike poles, zeros are not additive ! Nevertheless, Odorico pursued the 
interesting conjecture that approximately real and linear zeros may be a general 
feature of scattering amplitudes, ie retaining just property (i) and possibly (ii) 
above. This idea goes far beyond the simple model from which it started (Odorico 
1972). 

6.3. Multiparticle amplitudes 
6.3.1. Five-particle case. The  Veneziano model can be generalized to many-body 
amplitudes, the simplest case being for five particles. We want a model that will 
describe intermediate resonance and exchange poles simultaneously, in a dual way. 

fl 
Figure 26. Ingoing particle notation for five-particle amplitudes. 

For a symmetrical description, we label all external particles by their ingoing 
momenta p ,  and quantum numbers i ,  with i = 1,2, ..., 5 (see figure 26). Thus a 
typical channel is 1 + 2+3  + + 5, and the same amplitude also describes the nine 
other channels, 2+3+T+T+T etc, that are related by crossing. We define 

sij = (Pi + PAZ (6.22) 

where sij is the invariant square of either the i j  sub-energy or the i j  momentum 
transfer, depending on the channel. 

Figure 27. Single and double pole configurations in five-particle amplitudes. 

Single poles are obviously possible in each variable sij, if the i j  quantum numbers 
are non-exotic (see figure 27(a) ) .  Feynman diagrams show that double poles are 
also possible, in si* and s,, simultaneously, provided these are non-overlapping 
variables, ie the sets {ij} and {lm} have no common member (see figure 27(6)). 
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When two channels can have poles separately but not simultaneously, according to 
Feynman diagrams, we call them ' dual channels'. 

The  four-particle dual amplitude is generally a sum of (s, t ) ,  ( t ,  U) and (U, s) 
terms. How does this feature generalize ? These three terms are associated with 
the three possible orderings of the particles around the perimeter of a planar 
duality diagram (see figure 28). (Orderings related by reflection or cyclic permu- 
tation are clearly equivalent for this argument.) The  ordering ijkl corresponds to 
duality between the ij and j k  channels ; this term is absent if either of these channels 
is exotic or if there is no valid duality diagram. The  ijkl term is EXD in either the i j  
or j k  channel; such a term alone gives EXD Regge poles. Two terms corresponding 
to different orderings must be added, with equal coefficients, to generate a Regge 
signature factor. 

Figure 28. The three independent external orderings in four-particle amplitudes, corre- 
sponding to (s, t ) ,  ( t ,  U )  and (U, s) duality. 

Hence we expect the five-particle dual amplitude to be generally a sum of 
twelve terms, corresponding to the twelve independent orderings of the particles 
around the perimeter of a duality diagram. The  ordering ijklm corresponds to 
duality between the resonance and Regge poles in the channels ij, j k ,  kl, lm, mi, 
including the admissible double poles, but this term is absent if any of these 
channels is exotic or if there is no valid duality diagram for this ordering. Any 
single term will give EXD Regge poles; two different terms with equal coefficients 
are needed to give a pure signature factor. 

Take for example the reaction K+ p --f KO n-+ p. Out of the twelve independent 
external orderings, eight are forbidden because the ingoing channels K- p and 
Kop are exotic. The  remaining four are shown in figure 29. Of these, case ( d )  is 
forbidden by duality diagram rules; the h quark line has to connect Kf to KO, 
and this leads to a non-planar duality diagram unless K+ and KO are adjacent. 
Taking diagram ( U )  alone would give EXD Regge poles, dually related, in the five 
corresponding channels. Diagram ( b )  differs from ( a )  simply by the interchange of 
n-- and Ij : hence if we demand a pure signature factor for the n-+ p channel (assuming 
the single A(1236) trajectory dominates), we must add terms from ( U )  and (b )  with 
equal strengths and appropriate signs. Similarly we can give the rr-p channel a 
signature by adding ( c )  to (b). But such possibilities are very limited; we cannct 
generate a signature in any other channel using just the allowed diagrams ( a ) ,  (b )  
and ( c ) .  

What form can each dual term have? An answer is found by studying the 
integral representation for the Euler B function, occurring in the four-particle case. 

(6.23) B4(%2, a231 = r ( 1  - a121 r ( 1  - a23)/W - %2 - am) 

(6.24) 
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corresponding to the ordering 1234, where a12 = a(s12) = cyO+a’sl2 etc. This is 
completely symmetrical between a12 and 0123. There are poles in a12 at integers 
N a  1 that can be seen by expanding (1 - ~ ) l - ~ z s  in a Taylor series and studying 
the lower limit of U integration. Similarly there are poles in 0123, but since the latter 
are associated with the upper limit of integration, there are no double poles in cyl2 

and aZ3 simultaneously. 

P D 

s -  K+ P K+ 

i 

Figure 29. The four non-exotic orderings for the K+ p + KO T+ p amplitude. Case ( d )  is 
forbidden, however, by duality diagram rules. 

I n  direct analogy with equation (6.24), a five-particle generalization corre- 
sponding to the ordering 12345 is (Bardakci and Ruegg 1968) 

(6.25) 

where the indices i and j appearing in the integrand are any two non-successive 
integers (modulo 5), and the variables uk satisfy the constraints 

ux: = 1 - uk+l, (Ug = ul). (6.26) 

Only three of these constraints are linearly independent, leaving two independent 
variables among the uk. 

This B, formula is symmetrical under reflections and cyclic permutations of 
the ordered variables aI2, 0123, 0 1 ~ ~ ,  a4,, as1. However, it is usual to eliminate some 
redundant variables, and this symmetry is not then apparent. For example, 
eliminating u2, us and U ,  gives the form 

(6.27) 

In  close analogy with the B4 case, there are poles at integer values of a12 that come 
from the lower limit of the u1 integration and can be seen by expanding the integrand 
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about u1 = 0. Similarly the poles in 0123 are associated with the neighbourhood of 
u2 = 0. Double poles cannot occur in the dual channels 12 and 23, because the 
constraint equation (6.26) prevents u1 and u2 from approaching zero simultaneously. 
However, they are allowed in non-dual channels, such as 12 and 45 ; this is exactly 
as we wanted. 

It can also be shown that 3, has other desired properties, such as absence of 
ancestors and single and double Regge behaviour at high energy. It also has zero- 
width resonances, and the attendant troubles with unitarity. 

Strictly speaking the form of B, above is suitable only for scalar external particles, 
with leading trajectory intercepts a. < 0. It can be modified by adding an overall 
kinematic factor to adapt it to the physical trajectories with ci01:&, but external 
fermions still have to be treated as scalars. 

The  first application was to the reaction K- p - + ~ - r r f  A and other reactions, 
related by crossing and isospin, that share the same amplitude (Petersson and 
Tornqvist 1969, Tornqvist 1970, Hoyer et a1 1970). Unfortunately, in this case it 
was found expedient to use orderings that are forbidden by duality diagram rules. 
A successful application, respecting these rules, was made to the reactions 
Kf p -+ KO rr+ p, K- p + ROT- p, .n-p -+ KO K- p that are related by crossing; the 
allowed diagrams are discussed above and shown in figure 29. It was possible to 
reproduce all the main features of the data from 2.5-13 GeV/c, including over- 
lapping resonance formation and Regge behaviour, with essentially just one free 
parameter (Chan et al 1970). 

Each dual five-particle amplitude describes poles in five channels simultaneously, 
all tightly interrelated with very few parameters. Even with the freedom of 
kinematic factors and added satellites these dual amplitudes are much more 
stringently constrained than their four-particle counterparts. It is remarkable that 
data fitting is possible at all. For more discussion see the reviews by Berger (1971) 
and Thomas (1971). 

6.3.2. n-particle case. In  direct analogy with the previous examples, we expect the 
n-particle dual amplitude to be a sum of terms corresponding to the &(n- l)! 
independent orderings of the external particles. I n  any particular case, some may 
be forbidden by exoticity or by Harari-Rosner rules. 

For the kinematics, we now need to define multi-suffixed variables 
sij...k = (Pi+Pj+ f p k ) ' .  (6.28) 

Previously these were not needed, because in the five-particle case slZ3 = sd5. 
For convenience of notation, let us also consider the case where the external 
ordering is simply 1,2,3,  . . . , n, and introduce an abbreviation for the variable 
corresponding to a set of adjacent lines 

S%,k S i , i t l , i + 2  ...., k' (6.29) 
With the external ordering 1,2, . . ., n, we expect the dual amplitude to have poles 

in each of the variables for all possible pairings i,j. These are the energy 
variables for all the intermediate states, defined by cutting across the duality 
diagram in all possible ways. If any one of these channels is exotic the whole 
term is forbidden. 

Multiple poles can also occur, up to order (n  - 3), in channels that are non-dual, 
meaning that the corresponding cuts across the duality diagram are compatible. 
This notion is easier to define using an n-sided polygon, where the sides correspond 
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to the external particles; then each possible cut (channel) corresponds to a diagonal 
line joining differing vertices and non-dual channels correspond to non-intersecting 
diagonals. Note that ‘dual’ and ‘non-dual’ are defined with respect to a given 
ordering. Figure 30 shows an example of three non-dual channels in a six-particle 
amplitude and a Feynman diagram possessing the corresponding poles. 

Figure 30. (a) An ordered six-particle amplitude; (b)  non-dual s $ , ~  channels correspond to 
non-intersecting diagonals of a hexagon; (c) Feynman diagram with simultaneous poles 
in the non-dual channels shown in (b). 

For brevity we define a label P = ( i , j )  for each of the contributing channels. 
We set out to construct an integral representation, in analogy with B, and B, above, 
in which the poles in ap come from the lower limit of integration in an auxiliary 
variable up. T o  prevent coincident poles in dual channels, we impose constraints 

up = 1-n:uj5 - (6.30) 

where the product P runs over all channels dual to P. With these constraints it 
turns out that just (n  - 3) of the auxiliary variables are independent. An n-particle 
dual amplitude can then be defined (Chan and Tsou 1969, Goebel and Sakita 1969) 

P 

(6.31) 

where P runs over all ( i , j )  channels for the ordering 1,2, . . ., n, and P‘ runs over 
all channels excluding a set of (n-3) independent auxiliary variables. This 
generalized B function is symmetrical under cyclic permutations and reversal of the 
external particles 1,2, . . ., n, and is analytic apart from poles at values ap = integer 
N >  0. Coincident poles in overlapping channels are forbidden by the constraints, 
built into equation (6.31) through the 6 functions. When the 6 functions are 
eliminated, it can be seen that this formula includes our previous B, and B5. For 
further discussion and references see the reviews by Chan (1970), Alessandrini 
et al (1971) and Veneziano (1970). 

7. Duality in inclusive reactions 
I n  the last couple of years there has been immense interest in the study of the 

so-called inclusive reactions. This has opened a new field for the duality and 
Regge approach. The  simplest duality predictions seem to be borne out by the 
inclusive data remarkably well. The  present section summarizes some of these 
results. 
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7.1.  Inclusive reactions 
Inclusive reactions are processes where one detects and measures only some 

of the final particles in a collision without caring what else may also be produced. 
The  reaction studied most thoroughly so far is the single particle inclusive reaction 

ab-tcX (7.1) 
which represents a sum over all final states containing a given particle c with a 
given momentum pc. We have here four invariants-the energy square of ab(s), 
the momentum transfer squares between bc(t) and ac(u) and the missing mass 
square ( M 2 ) .  Only three of these four are independent, since 

s+t+U = ma2+??Zh2+me2+M2. (7.2) 
At asymptotic energy the phase space of the final particle c can be divided into 

two regions. (1) Fragmentation Regions, which correspond to finite t (fragmentation 
region of (b)) or finite U (fragmentation region of ( a ) )  as s goes to infinity. (2) 
Central Region, corresponding to both t and U going to infinity along with s. 

So far only the fragmentation region has been studied in detail. I n  view of the 
essential symmetry between the a and b fragmentation regions, we shall discuss 
only b fragmentation, ie large s and finite t. I n  this region the experimental quantities 
p, and p,, the longitudinal and transverse momentum of c in the rest frame of b, 
are related to the invariant quantities via 

t = m b 2 + m ~ - 2 m b E ,  

-=I+-- -  M2 PL E,  
S mh mb 

E ,  = (pL2+pT2+ m:)'/2. 

Finite t corresponds to finite p,,p,. 
The  invariant cross section for (7.1) is 

da da 
dt d M 2  dpL d2pT 

s-= 

(7.3) 

(7.4) 

which represents the net cross section for ab-+c(pC) + anything. Note that total 
cross section at,Obt is formally equivalent to a zero particle inclusive cross section 
ab + anything. 

Figure 31. Mueller optical theorem connecting a single particle inclusive cross section to the 
forward discontinuity of a three-body elastic amplitude. 

7.1.1. Mueller's optical theorem. The  standard optical theorem (equation (2.6)) 
connecting the total cross section to the imaginary part of the forward elastic 
amplitude has been extended to the inclusive cross section by Mueller (1970). 
This is shown schematically in figure 31. It relates the single particle inclusive 
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cross section to the forward imaginary part of a three-body elastic amplitude 

do 
dt dill2 

s- = f = disc A(abc+ ab?). (7.5) 

Of course, the three-body elastic amplitudef is not a physically measurable quantity 
unlike the two-body case. However, the duality and Regge hypotheses predict 
many features of this amplitude f, which can be tested with the inclusive cross 
section data using equation (7.5). This is analogous to testing the exchange 
degeneracy and Regge behaviour of the two-body elastic amplitude with the total 
cross section data. 

Figure 32. Single Regge expansion of the three-body amplitude for s, U, M2%-t ,  

U 
Figure 33. Normal Regge expansion of the amplitude ab + cX for s, U t ,  

7.1.2. Regge regions. For the Regge analysis of the three-body amplitude f, the 
fragmentation region (large s, finite t )  should be further divided into two parts- 
large M 2  and large s / M 2 .  As different quantities become large in these two parts 
the Regge analyses will be different. The  Reggeization condition for a multiparticle 
amplitude demands that all the invariants spanning across the reggeon be large 
compared with the ones lying on either end of the reggeon, as we see in figures 32 
and 33. 

I n  the Single Regge Region, which has large lW2, the three-body amplitude f 
can be approximated by the leading Regge exchanges in the uz channel, since 
s, U, i l l 2 $  t, (figure 32), ie 

, OIR(0) = 3. (7.6) ap(0) = 1 

Here P and R refer to the pomeron and the leading meson trajectories ( p ,  w,f, A2), 
which shall be simply called the reggeons. Asymptotically the first term goes to a 
constant and the second goes down as s-''~. They define the scaling and the non- 
scaling parts respectively in the terminology of limiting fragmentation (Feynman 
1969, Benecke et a1 1969). 

In  the Normal Regge Region, with large s / M 2 ,  the production amplitude for 
(7.1) can be approximated by the leading Regge exchanges in the bc channel 
(figure 33), as s, u$  t ,  M 2 ,  Hence the cross section is given by figure 34, ie 
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Here /3 is the reggeon coupling to bi;, ,$ the signature factor and sal the reggeon 
propagator. Aia(M2, t )  is the forward imaginary part of the reggeon particle 
amplitude. 

Figure 34. The inclusive cross section for s, U + M 2 ,  t ,  VZ,,~,~~. 

The  Triple Regge Region is defined as having large slM2 and large M 2 .  At 
sufficiently large s it is possible to have M 2  large, at the same time keeping s / M 2  
large. This corresponds to the overlap domain between the two regions described 
above. I n  this case figure 34 further reduces to figure 35, which is the so-called 

C 

Figure 35. The triple Regge expansion, for large s and large s/iM2. 

Triple Regge Graph. It amounts to approximating the reggeon-particle amplitude 
by the asymptotic contribution 

Aia 1argeJf.l: PPaag~bi (M2)ap(0) -2ai ( l )  + P R a a g ~ ~ E ) i i ( M 2 ) a R ( 0 ) - z a ~ ( ~ ) ,  (7.8) 
The  2a,(t) term in the exponent arises because the amplitude A, corresponds to 
maximal helicity flip of the reggeon legs. 

7.1.3. Finite mass sum rule. In  a number of models like the perturbation theory 
and the Veneziano model the reggeon-particle amplitude is seen to have the same 
analyticity and crossing properties as an ordinary two-particle amplitude (Landshoff 
1970, De Tar  and Weis 1971). It also has a similar asymptotic Regge behaviour 
as seen in equation (7.8). It has been postulated, therefore, that the reggeon- 
particle amplitude satisfies a dispersion sum rule analogous to the FESR (equation 
2.13) (Einhorn 1971, Kwiecinski 1972, Olesen 1971, Sanda 1972). This is the 
finite mass sum rule (FMSR): 

]:[&(v, t )  - ( -)" AiU(v, t)]  V" dv 

Na,(O)-2rdt)+n+l NaE(0)-Zai( l )+n+l  

(7.9) - - h"~ ap( 0) - 2 4 t )  + n + 1 + PRaag%i CUR( 0) - 2 4  t )  + n + 1 
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where 

By (7.7) the corresponding relation for the inclusive cross section reads 

v = i ( M 2 - m  a 2 - t  1. (7.10) 

(7.11) 

Note that the missing mass variable M 2  here plays a role analogous to the energy 
variable in the two-body case. 

7.1.4. Dual property of the three-body amplitude. The  Harari-Freund two- 
component duality for the two-body case has been extended to the three-body 
amplitude (Einhorn et a1 1971, Tye and Veneziano 1972a,b). In  general one gets 
seven components, with some additional contribution coming from diffraction 
dissociation if the particles 6 and c have identical quantum numbers. 

I n  the region of small t ,  however, the two-component picture is expected to 
provide a good approximation, ie the resonances and background contributions 
in abz (or equivalently the missing mass channel X) should be dual to the reggeon 
and pomeron exchanges in the aSi channel (Chan et a1 1971). This can be seen 
intuitively from figure 29. For small t the system bc can be treated as a quasi- 
particle, moved somewhat off its mass shell. Therefore the three-body amplitude 
in this limit should not behave very differently from a quasi two-body amplitude. 
A more formal justification for this ansatz has been provided by Chan and Hoyer 
(1971) on the basis of dual perturbation theory. The  only exceptions to the ansatz 
are when the b t  system has exotic or vacuum quantum numbers, the latter containing 
diffraction dissociation. I n  either case the identification of br with a quasi-particle 
system fails. 

Experimentally the fragmentation events are heavily concentrated at small p , .  
As a result a large part of the fragmentation events satisfy the small t criterion, 
particularly for a light fragment like n-. Therefore these events provide a good 
test for the two-component duality and the Regge theories described above. 

7.2 .  Duality in the large missing-mass region 
I n  high energy two-body scattering the most significant result of duality is the 

exchange degeneracy. We have seen this firstly in the flatness of the exotic cross 
sections and secondly in the equality between the non-diffractive components of 
the total cross sections for n--p(n--p) and K-p(K-n). These two sets of EXD 
predictions can be extended to the large M 2  inclusive cross section, via two- 
component duality and the single Regge formula (7.6), as we see below. 

(1) Let us compare the set of ‘exotic’ reactions (abc exotic and bc non-exotic) 
K+p+rr-X, r+p+n--X,  pp-+n--X 

with the ‘non-exotic’ ones 
K-p-tn-X,  rr-p+x-X, y p + r - X .  

The  six reactions have a common fragmentation vertex (bc) (compare figure 32). 
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Assuming pomeron factorization, therefore, the six cross sections should have a 
common asymptotic limit, when normalized by the corresponding ap total cross 
section ie the ratio f ( a b  -+ cX)/o(ap). Now, the two-component duality predicts 
the exotic cross sections to have reached this limit already at small s, while the 
non-exotic ones are predicted to approach this from above following a s-li2 behaviour 
(see equation (7.6)). The  experimental cross sections are, indeed, in good agreement 
with these predictions as we see in figure 36. 

T T 

f 

s-+ 
0.1 0.2 0.3 

I I I 

I S R  24 16 I2  8 6 
p,ob (GeV/c) 

Figure 36. Comparison of the 'exotic' cross sections (p, T+, K+) p + T - X  with the 'non- 

There are several technical advantages in testing EXD with the inclusive data 
compared to the two-body case. Firstly, we see from figure 36 that the non-scaling 
term here is typically a 50-60% effect, in contrast to the 15-20% effect in the total 
cross section case, Therefore, the observed flatness of the exotic cross sections here 
is that much more spectacular a success for duality. Secondly, one has more 
freedom with the quantum numbers, as one is dealing with a three-body system. 
Consequently a large number of exotic channels are experimentally accessible here, 
whereas one had only KN and N N  in the total cross section case. We list below 
the exotic inclusive cross sections where the s independence has been checked, either 
by comparing data at different energies (where available) or through factorization. 

(a)  n+p+rr-X, ( b )  K+p+rr-X, (c) pp-trr-x 
( d )  K + p + n + X  ( e )  p p + n + X  (f) rr+p+AX 

(g) K + p + h X ,  (h )  r r fp- tKtX,  (i) p p - t i l x .  

exotic ' ones (T-, K-, y )  p + r -  X. 
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Finally, in contrast to the total cross section, the s independence of the inclusive 
cross section can be checked as a function of two extra variables-t and s / M 2  (or 
equivalentlypL andPT). Such a two-dimensional test of EXD has, indeed, been made 
with a large number of inclusive data (Chen et al 1971). 

(2) Applying EXD, factorization and SU(3) to the single Regge formula (7.6), 
one gets the additional relations 

fnon-scaling(K- + 7T- X) = fnon-scaling ( -  7T + n- X) (7.12) 

and a similar relation between K- p + n- X and yp + n- X. These are analogous to 
the relation (5.3) for the total cross sections. One can check these, for instance, 
by drawing quark diagrams for (7.12) analogous to figure 20. Again these relations 
have been found to agree very well with the inclusive data (Wettinen 1972, Chan 
et a1 1972). 

7.3. Duality in the small missing-mass region 
I n  low energy two-body scattering the most significant result of duality is the 

Dolen-Horn-Schmid observation that the resonance contributions are interpolated 
by the leading Reggeon exchange in some average sense. I t  assumes the FESR (2.14) 
to hold in a local or semilocal sense in addition to the two-component duality, and 
we have seen evidence of its success in figures 9-11. The  hypothesis can be 
extended to the inclusive cross section by assuming the FMSR (7.11) to hold semi- 
locally and, of course, the two-component duality. It gives, for instance, 

where the averaging is to be taken over resonances in an M 2  interval of about 1 GeV2, 
as in the two-body case. 

The  equation (7.13) is evidently a very powerful relation for the resonance 
production process (see figure 33): 

ab --f c j .  (7.14) 

It relates the production cross section to the mass of the produced resonance M j 2 .  
This relation has been applied to several sets of resonance production data with 
remarkable success (Hoyer et a1 1973a, b). We quote a few examples below. 

The  reactions 
n- P + n(p0,f,g0) (7.15) 
K-p+n(K*O, K**O 1 (7.16) 

are dominated by pion exchange at small t. Equation (7.13) predicts the production 
cross section to increase with the resonance mass as 

(7.17) 

(Note that the crossed reggeon-particle channel dG/dt is exotic for the above 
processes.) The  above prediction is compared against the data for (7.15) in 
figure 37. Similar comparisons have been made for (7.16) and for thef, w exchange 
contributions in 

77-  p + p(r-9 p-, A,, g-) (7.18) 
K-p+p(K-, K*-, K**-). (7.19) 

I n  each case one observes rather good agreement. 
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0.04C ltl<0,16 
I '  

The  relation (7.13) has two significant corollaries. 
(1) For a given Regge exchange the production cross section should show a 

(2) The  ratio of 7 to f, w should increase linearly with resonance mass square 
logarithmic antishrinkage with increasing resonance mass, 

( 2: (Mj2)2ali-2af. ). Again one sees good experimental support for these predictions. 

- 

K-p+Xon X'=K*,K** 
IO GeV 

0.05~ I t140.15 

k 400 
n a 

k 
W 
n 
. 

The  analysis has been extended to meson-baryon and baryon-antibaryon 
channels by studying backward resonance production, ie baryon exchange processes. 
One remarkable result of this analysis is the dual property of meson resonances in 
the baryon-antibaryon channels. This comes from the backward production 

which is dominated by A exchange. One expects that here 

Now, the interpolation of these resonance production cross sections require 
~ ~ ( 0 )  2: - 4, instead of the normal value + observed for the same set of resonances 
in forward production, ie in the meson-meson channel. This provides the first experi- 
mental support for the duality diagram prediction of figure 19 which says that 
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normal two-quark resonances should be dual to some exotic trajectory exchange 
in the baryon-antibaryon channel. One should note that such resonances were 
inaccessible in the two-body case, due to the high threshold of baryon-antibaryon 
scattering. They could be probed, however, by going into the reggeon-particle 
channel. 

7.4. Concluding remarks 
T h e  inclusive reactions provide a much wider scope to study the duality 

hypothesis compared to the good old two-body phenomenology. T h e  most 
significant results of duality-ie EXD for high energy scattering and the Regge 
interpolation of resonances at low energy-have been extended to the inclusive 
case with remarkable success. However, the inclusive study is still in its preliminary 
stages. There are continuing developments in this field, on both experimental 
and theoretical sides. They involve looking into a wider class of fragmentation 
processes and into other aspects of the subject, such as the central region and the 
two-particle inclusive reactions etc. These analyses will surely add a great deal 
to our understanding of duality. 
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